Presbyopia

Jump to: navigation, search
Presbyopia
Specrx-accom.png
ICD-10 H52.4
ICD-9 367.40

WikiDoc Resources for Presbyopia

Articles

Most recent articles on Presbyopia

Most cited articles on Presbyopia

Review articles on Presbyopia

Articles on Presbyopia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Presbyopia

Images of Presbyopia

Photos of Presbyopia

Podcasts & MP3s on Presbyopia

Videos on Presbyopia

Evidence Based Medicine

Cochrane Collaboration on Presbyopia

Bandolier on Presbyopia

TRIP on Presbyopia

Clinical Trials

Ongoing Trials on Presbyopia at Clinical Trials.gov

Trial results on Presbyopia

Clinical Trials on Presbyopia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Presbyopia

NICE Guidance on Presbyopia

NHS PRODIGY Guidance

FDA on Presbyopia

CDC on Presbyopia

Books

Books on Presbyopia

News

Presbyopia in the news

Be alerted to news on Presbyopia

News trends on Presbyopia

Commentary

Blogs on Presbyopia

Definitions

Definitions of Presbyopia

Patient Resources / Community

Patient resources on Presbyopia

Discussion groups on Presbyopia

Patient Handouts on Presbyopia

Directions to Hospitals Treating Presbyopia

Risk calculators and risk factors for Presbyopia

Healthcare Provider Resources

Symptoms of Presbyopia

Causes & Risk Factors for Presbyopia

Diagnostic studies for Presbyopia

Treatment of Presbyopia

Continuing Medical Education (CME)

CME Programs on Presbyopia

International

Presbyopia en Espanol

Presbyopia en Francais

Business

Presbyopia in the Marketplace

Patents on Presbyopia

Experimental / Informatics

List of terms related to Presbyopia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [2] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

Presbyopia (Greek word "presbys" (πρέσβυς), meaning "old person") is the eye's diminished ability to focus that occurs with aging. The most widely held theory is that it arises from the loss of elasticity of the crystalline lens, although changes in the lens's curvature from continual growth and loss of power of the ciliary muscles (the muscles that bend and straighten the lens) have also been postulated as its cause.

Presbyopia is not a disease as such, but a condition that affects everyone at a certain age. The first symptoms are usually noticed between the ages of 40-50, though in fact the ability to focus declines throughout life, from an accommodation of about 20 dioptres (ability to focus at 50 mm away) in a young person to 10 dioptres at 25 and levelling off at 0.5 to 1 dioptre at age 60 (ability to focus down to 1 -2 metres only). For those with good distance vision, it may start with difficulty reading fine print, particularly if the lighting is poor, or eyestrain when reading for long periods. Many advanced presbyopes complain that their arms have become "too short" to hold reading material at a comfortable distance.[1]

In optics, the closest point at which an object can be brought into focus by the eye is called the eye's near point. A standard near point distance of 25 cm is typically assumed in the design of optical instruments, and in characterizing optical devices such as magnifying glasses.

Presbyopia, like other focus defects, becomes much less noticeable in bright sunlight. This is not the result of any mysterious 'healing effect' but just the consequence of the iris closing to a pinhole, so that depth of focus, regardless of actual ability to focus, is greatly enhanced, as in a pinhole camera which produces images without any lens at all. Another way of putting this is to say that the circle of confusion, or blurredness of image, is reduced, without improving focusing.

A delayed onset of seeking correction for presbyopia has been found among those with certain professions and those with miotic pupils.[2] In particular, farmers and housewives seek correction later, whereas service workers and construction workers seek eyesight correction earlier.

Focusing mechanism of the eye

There is some confusion in articles and even textbooks over how the focusing mechanism of the eye actually works. In the classic book, 'Eye and Brain' by Gregory, for example, the lens is said to be suspended by a membrane, the 'zonula', which holds it under tension. The tension is released, by contraction of the ciliary muscle, to allow the lens to fatten, for close vision. This would seem to imply that the ciliary muscle, which is outside the zonula must be circumferential, contracting like a sphincter, to slacken the tension of the zonula pulling outwards on the lens. This is consistent with the fact that our eyes seem to be in the 'relaxed' state when focusing at infinity, and also explains why no amount of effort seems to enable a myopic person to see further away. Many texts, though, describe the 'ciliary muscles' (which seem more likely to be just elastic ligaments and not under any form of nervous control) as pulling the lens taut in order to focus at close range. This has the counterintuitive effect of steepening the lens centrally (increasing its power) and flattening peripherally.

Presbyopia and the 'payoff' for the nearsighted

Many people with myopia are able to read comfortably without eyeglasses or contact lenses even after age 40. Myopes considering refractive surgery are advised that surgically correcting their nearsightedness may actually be a disadvantage after the age of 40 when the eyes become presbyopic and lose their ability to accommodate or change focus because they will then need to use glasses for reading.

Treatment

Presbyopia is not routinely curable - though tentative steps toward a possible cure suggest that this may be possible - but the loss of focusing ability can be compensated for by corrective lenses including eyeglasses or contact lenses. In subjects with other refractory problems, Convex lenses are used. In some cases, the addition of bifocals to an existing lens prescription is sufficient. As the ability to change focus worsens, the prescription needs to be changed accordingly.

Around the age of 65, the eyes have usually lost most of the elasticity. However, it will still be possible to read with the help of the appropriate prescription. Some may find it necessary to hold reading materials farther away, or require larger print and more light to read by. People who do not need glasses for distance vision may only need half glasses or reading glasses.

While bifocals and multifocals offer a working solution to everyday problems, they are hated by many, especially engineers, camera operators, and those used to having a good sharp distortion-free image in their work. Varifocals cause straight lines to look bent, and can leave some feeling dizzy after extended use. The power of simple, multiple prescriptions should not be underestimated. Reading glasses hastily prescribed may be fine for reading, but not good for shopping and generally walking around in. A slightly weaker prescription however, just powerful enough for reading using the full remaining accommodation of the eye, may feel much more comfortable for more general use too. Careful calculation of working ranges, together with a certain amount of trial and error, can restore undistorted vision for critical tasks for many people who do not find multifocals to their liking.

In order to reduce the need for bifocals or reading glasses, some people choose contact lenses to correct one eye for near and one eye for far with a method called "monovision". Monovision sometimes interferes with depth perception. There are also newer bifocal or multifocal contact lenses that attempt to correct both near and far vision with the same lens. [3]

Eye exercises have been quoted as a way to delay the onset of Presbyopia. Go to: http://www.cam.org/~rsilver/presben.htm

Surgery

New surgical procedures may also provide solutions for those who do not want to wear glasses or contacts, including the implantation of accommodative intraocular lenses (IOLs). Scleral expansion bands, which increase the space between the ciliary body and lens, have not been found to provide predictable or consistent results in the treatment of presbyopia.[4] To read more about surgical procedures go to: http://www.allaboutvision.com/visionsurgery/presbyopia_surgery.htm

References

  1. Robert Abel, The Eye Care Revolution: Prevent and Reverse Common Vision Problems, Kensington Books, 2004.
  2. Garcia Serrano JL, Lopez Raya R, Mylonopoulos Caripidis T. "Variables related to the first presbyopia correction." Arch Soc Esp Oftalmol. 2002 Nov;77(11):597-604. PMID 12410405.
  3. Guoqiang Li et al, Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications", Proceedings of National Academy of Sciences USA, V103, 6100-6104 (2006).
  4. Malecaze FJ, Gazagne CS, Tarroux MC, Gorrand JM. "Scleral expansion bands for presbyopia." Ophthalmology. 2001 Dec;108(12):2165-71. PMID 11733253.

External links

See also

Source:

Cost Effectiveness of Presbyopia

| group5 = Clinical Trials Involving Presbyopia | list5 = Ongoing Trials on Presbyopia at Clinical Trials.govTrial results on PresbyopiaClinical Trials on Presbyopia at Google


| group6 = Guidelines / Policies / Government Resources (FDA/CDC) Regarding Presbyopia | list6 = US National Guidelines Clearinghouse on PresbyopiaNICE Guidance on PresbyopiaNHS PRODIGY GuidanceFDA on PresbyopiaCDC on Presbyopia


| group7 = Textbook Information on Presbyopia | list7 = Books and Textbook Information on Presbyopia


| group8 = Pharmacology Resources on Presbyopia | list8 = AND (Dose)}} Dosing of PresbyopiaAND (drug interactions)}} Drug interactions with PresbyopiaAND (side effects)}} Side effects of PresbyopiaAND (Allergy)}} Allergic reactions to PresbyopiaAND (overdose)}} Overdose information on PresbyopiaAND (carcinogenicity)}} Carcinogenicity information on PresbyopiaAND (pregnancy)}} Presbyopia in pregnancyAND (pharmacokinetics)}} Pharmacokinetics of Presbyopia


| group9 = Genetics, Pharmacogenomics, and Proteinomics of Presbyopia | list9 = AND (pharmacogenomics)}} Genetics of PresbyopiaAND (pharmacogenomics)}} Pharmacogenomics of PresbyopiaAND (proteomics)}} Proteomics of Presbyopia


| group10 = Newstories on Presbyopia | list10 = Presbyopia in the newsBe alerted to news on PresbyopiaNews trends on Presbyopia


| group11 = Commentary on Presbyopia | list11 = Blogs on Presbyopia

| group12 = Patient Resources on Presbyopia | list12 = Patient resources on PresbyopiaDiscussion groups on PresbyopiaPatient Handouts on PresbyopiaDirections to Hospitals Treating PresbyopiaRisk calculators and risk factors for Presbyopia


| group13 = Healthcare Provider Resources on Presbyopia | list13 = Symptoms of PresbyopiaCauses & Risk Factors for PresbyopiaDiagnostic studies for PresbyopiaTreatment of Presbyopia

| group14 = Continuing Medical Education (CME) Programs on Presbyopia | list14 = CME Programs on Presbyopia

| group15 = International Resources on Presbyopia | list15 = Presbyopia en EspanolPresbyopia en Francais

| group16 = Business Resources on Presbyopia | list16 = Presbyopia in the MarketplacePatents on Presbyopia

| group17 = Informatics Resources on Presbyopia | list17 = List of terms related to Presbyopia


}}



Linked-in.jpg