Diabetes mellitus type 2 medical therapy

Jump to navigation Jump to search

Diabetes mellitus main page

Diabetes mellitus type 2 Microchapters

Home

Patient information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Diabetes Mellitus Type 2 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical therapy

Life Style Modification
Pharmacotherapy
Glycemic Control

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Seyedmahdi Pahlavani, M.D. [2]

Overview

The main goals of treatment are, eliminate hyperglycemic symptoms, control the long term complications and improve the patient's quality of life.

Diabetes mellitus type 2 is initially treated by life style modification and weight loss, especially in obese patients. Metformin is the first line pharmacologic therapy that usually starts once the diagnosis is confirmed unless contraindications exist. If glycemic goals does not achieved, the second agent must be add to metformin. A wide range of options are available to add as combination therapy based on patient condition and comorbidities.

Pharmacologic therapy

Medical therapy starts with metformin monotherapy unless there is a contraindication for it. In following conditions, treatment starts with dual therapy:

  • If HbA1C is greater than 9, start with dual oral blood glucose lowering agent.
  • If HbA1C is greater than 10 or blood glucose is more than 300 mg/dl or patient is markedly symptomatic, consider combination therapy with insulin.

Metformin

Metformin is effective and safe, is inexpensive, and may reduce risk of cardiovascular events and death. Patients should be advised to stop the medication in cases of nausea, vomiting or dehydration. It's contraindications include, heart failure, liver failure, GFR ≤30 and metabolic acidosis.

Combination therapy

Any agent can be added as second drug based on patient condition but American Association of Clinical Endocrinologists recommends either incretin based therapy or sodium glucose transporter 2 (SGLT2) inhibition agents.

The following table summarize the available FDA approved glucose lowering agents that may help to individualize treatment for each patient.

Class Drug Mechanism of action Primary physiologic action Advantages Disadvantages Cost
Biguanids Metformin Activates AMP-kinase ↓ Hepatic glucose

production

  • Extensive experience
  • Relatively higher A1C efficacy
Low
Sulfonylureas 2nd generation Closes K-ATP channels on beta cell plasma membranes Insulin secretion
  • Extensive experience
  • Relatively higher A1C efficacy
  • ↑ Weight
Low
Meglitinides Closes K-ATP channels on beta cell plasma membranes Insulin secretion
  • Dosing flexibility
  • ↑ Weight
  • Frequent dosing schedule
Moderate
Thiazolidinedione

(TZDs)

Activates the nuclear transcription factor PPAR-gama ↑ Insulin sensitivity
  • Rare hypoglycemia
  • Relatively higher A1C efficacy
  • Durability
  • ↓ Triglycerides (pioglitazone)
  • ↓ CVD events (PROactive, pioglitazone)
  • ↓ Risk of stroke and MI in patients without diabetes and with insulin resistance and history of recent stroke or TIA
  • ↑ Weight
  • Bone fractures
Low
α-Glucosidase

inhibitors

Inhibits intestinal

α-glucosidase

Slows intestinal carbohydrate

digestion/absorption

  • Rare hypoglycemia
  • ↓ Postprandial glucose excursions
  • ↓ CVD events in prediabetes
  • Nonsystemic
  • Generally modest A1C efficacy
  • Frequent dosing schedule
Low to

moderate

DPP-4

inhibitors

Inhibits DPP-4 activity, increasing postprandial incretin (GLP-1, GIP) concentrations
  • Insulin secretion (glucose dependent)
  • Glucagon secretion (glucose dependent)
  • Well tolerated
High
Bile acid sequestrants Colesevelam Binds bile acids in intestinal tract,

increasing hepatic bile acid production

  • ↓ Hepatic glucose production
  • Modest A1C efficacy
  • May ↓ absorption of other medications
High
Dopamine-2

agonists

Bromocriptine

(quick release)§

Activates dopaminergic receptors
  • ↑ Insulin sensitivity
  • Modest A1C efficacy
High
SGLT2

inhibitors

Inhibits SGLT2 in the proximal nephron
  • Blocks glucose reabsorption by the kidney,increasing glucosuria
  • ↓ Weight
  • ↓ Blood pressure
  • Associated with lower CVD event rate and mortality in patients with CVD
High
GLP-1 receptor

agonists

  • Exenatide extended release
Activates GLP-1 receptors
  • Insulin secretion (glucose dependent)
  • Glucagon secretion (glucose dependent)
  • Slows gastric emptying
  • ↑ Satiety
  • ↓ Weight
  • ↓ Some cardiovascular risk factors
  • Associated with lower CVD event rate and mortality in patients with CVD
  • Injectable
  • Training requirements
High
Amylin mimetics Pramlintide§ Activates amylin receptors
  • Slows gastric emptying
  • ↑ Satiety
  • Postprandial glucose excursions
  • ↓ Weight
  • Modest A1C efficacy
  • Injectable
  • Frequent dosing schedule
  • Training requirements
High
Insulins
  • Rapid-acting analogs
    • Inhaled insulin
Activates insulin receptors
  • ↑ Glucose disposal
  • ↓ Hepatic glucose production
  • Nearly universal response
  • Theoretically unlimited efficacy
  • ↓ Microvascular risk
  • Training requirements
  • Patient and provider reluctance
  • Injectable (except inhaled insulin)
  • Pulmonary toxicity (inhaled insulin)
High
  • Short-acting
  • Intermediate-acting
  • Basal insulin analogs
  • Premixed insulin products
    • NPH/Regular 70/30
    • 70/30 aspart mix
    • 75/25 lispro mix
    • 50/50 lispro mix

lnitial concerns regarding bladder cancer risk are decreasing after subsequent study.

§ Not licensed in Europe for type 2 diabetes.

References