Obesity cardiomyopathy

Jump to navigation Jump to search
Pathophysiology of obesity cardiomyopathy. Schematic is the author's own work based on "Ebong IA (2014) Mechanisms of heart failure in obesity. Obesity Research and Clinical Practice 8: e540-e548.[1]

WikiDoc Resources for Obesity cardiomyopathy

Articles

Most recent articles on Obesity cardiomyopathy

Most cited articles on Obesity cardiomyopathy

Review articles on Obesity cardiomyopathy

Articles on Obesity cardiomyopathy in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Obesity cardiomyopathy

Images of Obesity cardiomyopathy

Photos of Obesity cardiomyopathy

Podcasts & MP3s on Obesity cardiomyopathy

Videos on Obesity cardiomyopathy

Evidence Based Medicine

Cochrane Collaboration on Obesity cardiomyopathy

Bandolier on Obesity cardiomyopathy

TRIP on Obesity cardiomyopathy

Clinical Trials

Ongoing Trials on Obesity cardiomyopathy at Clinical Trials.gov

Trial results on Obesity cardiomyopathy

Clinical Trials on Obesity cardiomyopathy at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Obesity cardiomyopathy

NICE Guidance on Obesity cardiomyopathy

NHS PRODIGY Guidance

FDA on Obesity cardiomyopathy

CDC on Obesity cardiomyopathy

Books

Books on Obesity cardiomyopathy

News

Obesity cardiomyopathy in the news

Be alerted to news on Obesity cardiomyopathy

News trends on Obesity cardiomyopathy

Commentary

Blogs on Obesity cardiomyopathy

Definitions

Definitions of Obesity cardiomyopathy

Patient Resources / Community

Patient resources on Obesity cardiomyopathy

Discussion groups on Obesity cardiomyopathy

Patient Handouts on Obesity cardiomyopathy

Directions to Hospitals Treating Obesity cardiomyopathy

Risk calculators and risk factors for Obesity cardiomyopathy

Healthcare Provider Resources

Symptoms of Obesity cardiomyopathy

Causes & Risk Factors for Obesity cardiomyopathy

Diagnostic studies for Obesity cardiomyopathy

Treatment of Obesity cardiomyopathy

Continuing Medical Education (CME)

CME Programs on Obesity cardiomyopathy

International

Obesity cardiomyopathy en Espanol

Obesity cardiomyopathy en Francais

Business

Obesity cardiomyopathy in the Marketplace

Patents on Obesity cardiomyopathy

Experimental / Informatics

List of terms related to Obesity cardiomyopathy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Soroush Seifirad, M.D.[2]

Synonyms and keywords:

Overview

Obesity cardiomyopathy is defined as congestive heart failure due to structural and hemodynamic changes because of obesity. Increased total blood volume and cardiac output because of the high metabolic activity of excessive fat in long-standing obesity may lead to left ventricular dilation, increased left ventricular wall stress, compensatory left ventricular hypertrophy, and left ventricular diastolic dysfunction. Inadequate hypertrophy might tend to left ventricular systolic dysfunction due to high wall stress, sleep apnea/ obesity hypoventilation syndrome might tend to pulmonary hypertension and subsequent right ventricular structural changes.


My references (Temporary)

[2] [3]

Historical Perspective

  • Obesity cardiomyopathy is a new term, but the association between obesity and cardiac malfunction dates as far back as the late 1700s.
  • 1783: The first mention of excess deposition of fat around the heart of obese individuals in novel literature.
  • 1806: Fat tissue surrounding the heart of obese subjects was suggested as the culprit of heart disease and sudden death in obese patients.
  • late 19th Century and the early 20th Century: Shreds of evidence of a deleterious effect of obesity on cardiac function has appeared in the published research.
  • 1933: the initial clinical descriptions of a pathologic obesity-associated cardiac morphology and dysfunction suggested by Saphir and Corrigan, and Smith and Willius.
  • late 20th and early 21st Century: Plenty of published studies revealed the cardiomyopathic processes caused by obesity and suggested that it may involve both the left and right sides of the heart, and it could occur in the absence of other cardiac or extracardiac conditions associated with morbid obesity such as systemic hypertension, diabetes mellitus and coronary artery disease (CAD)
  • Framingham Heart Study: FHS reported obesity is an independent risk factor for the development of CHF.
  • Nevertheless, there are some authors and scientists that believe there is no such a disease, and almost every obese patients with cardiomyopathy is suffering from another disease/comorbidity of obesity.[4]
  • Obesity as a real disorder and world wide problem:
  • Ng and associates study: as of February 2020, their study remains the biggest and most powerful study in the epidemiology of obesity. For more than three decades (1980-2013), they recruited subjects aged between two and over 80 years old from 188 countries; the highest prevalence of obesity has been reported in Oceania, North Africa, and the Middle East, respectively which exceeded 50% of the general population. The prevalence was a little lower but still extremely high all around the world. Almost one-third of the population was obese In North America, while in Western Europe, twenty percent of the population was obese. This is a worldwide silent catastrophe.


Classification

  • Although it has been defined as a clinical entity for many years, but "current morphological-and functional-based classification systems have excluded it as a distinct form of cardiomyopathy."

Pathophysiology

It is thought that obesity cardiomyopathy is the result of hemodynamic changes and systemic metabolic changes of adeposity.

The most important mechanisms in the development of obesity cardiomyopathy are:

[1]


Mechanism Effects/ Results
Hemodynamics Increased blood volume
Increased stroke volume/Work
Increased arterial pressure
Increased LV wall stress
Pulmonary artery hypertension
Cardiac Structure LV concentric remodeling
LV hypertrophy (eccentric/concentric)
Left atrial enlargement
RV hypertrophy
Cardiac Function LV diastolic dysfunction
LV systolic dysfunction
RV failure
Inflammation Increased C-reactive protein
Over-expression of tumor necrosis factors (TNF)
Neurohumoral Insulin resistance and hyperinsulinemia
Leptin resistance and hyperleptinemia
Reduced adiponectin
Sympathetic nervous system over-activation
Activation of renin-angiotensin-aldosterone system
Cellular Hypertrophy
Apoptosis
Fibrosis

Causes

Obesity cardiomyopathy may be caused by hemodynamic changes and systemic metabolic changes of adeposity.

Obesity itself and comorbidities of obesity such as hypertension, diabetes, dyslipidemia, atherosclerosis, chronic kidney disease, obstructive sleep apnea and subsequent pulmonary hypertension are all among causes of obesity cardiomyopathy.

Differentiating Obesity Cardiomyopathy from other Diseases

Obesity cardiomyopathy must be differentiated from other diseases that cause [clinical feature 1], [clinical feature 2], and [clinical feature 3], such as [differential dx1], [differential dx2], and [differential dx3].

OR

obesity cardiomyopathy must be differentiated from [[differential dx1], [differential dx2], and [differential dx3].

Epidemiology and Demographics

The incidence/prevalence of obesity cardiomyopathy is approximately [number range] per 100,000 individuals worldwide.

OR

In [year], the incidence/prevalence of obesity cardiomyopathy was estimated to be [number range] cases per 100,000 individuals worldwide.

OR

In [year], the incidence of obesity cardiomyopathy is approximately [number range] per 100,000 individuals with a case-fatality rate of [number range]%.


Patients of all age groups may develop obesity cardiomyopathy.

OR

The incidence of obesity cardiomyopathy increases with age; the median age at diagnosis is [#] years.

OR

obesity cardiomyopathy commonly affects individuals younger than/older than [number of years] years of age.

OR

[Chronic disease name] is usually first diagnosed among [age group].

OR

[Acute disease name] commonly affects [age group].


There is no racial predilection to obesity cardiomyopathy.

OR

obesity cardiomyopathy usually affects individuals of the [race 1] race. [Race 2] individuals are less likely to develop obesity cardiomyopathy.


obesity cardiomyopathy affects men and women equally.

OR

[Gender 1] are more commonly affected by obesity cardiomyopathy than [gender 2]. The [gender 1] to [gender 2] ratio is approximately [number > 1] to 1.


The majority of obesity cardiomyopathy cases are reported in [geographical region].

OR

obesity cardiomyopathy is a common/rare disease that tends to affect [patient population 1] and [patient population 2].

besity is becoming a global epidemic,1,2 and in the past 10 years in the United States, dramatic increases in obesity have occurred in both children and adults.3

The prevalence of HF is 2-3% of the population in industrialized countries [2]. Approximately 5.7 million American adults have HF and require frequent hospitalizations [3]. ... Obesity-related cardiomyopathy is estimated to cause 11% of HF cases in males and up to 14% in women [

Risk Factors

There are no established risk factors for obesity cardiomyopathy.

OR

The most potent risk factor in the development of obesity cardiomyopathy is [risk factor 1]. Other risk factors include [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of obesity cardiomyopathy include [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].

OR

Common risk factors in the development of obesity cardiomyopathy may be occupational, environmental, genetic, and viral.

. In morbid obese patients, cardiomyopathy may result from obesity, which may be potentiated with increased predisposition to other risk factors such as coronary artery disease, diabetes mellitus, hypertension, dyslipidemia, insulin resistance, metabolic syndrome, kidney disease, obstructive sleep apnea and cardiac conduction abnormalities.

Screening

There is insufficient evidence to recommend routine screening for [disease/malignancy].

OR

According to the [guideline name], screening for obesity cardiomyopathy is not recommended.

OR


According to the [guideline name], screening for obesity cardiomyopathy by [test 1] is recommended every [duration] among patients with [condition 1], [condition 2], and [condition 3].

adiponectin has been proposed as a biomarker that might serve as a suitable screening test facilitating early intervention and prevention of heart failure (130, 275, 283).[6] . Several reports have suggested that leptin directly induced hypertrophy in both human and rodent cardiomyocytes. [7]



[8]

Natural History, Complications, and Prognosis

If left untreated, [#]% of patients with obesity cardiomyopathy may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].

OR

Common complications of obesity cardiomyopathy include [complication 1], [complication 2], and [complication 3].

OR

Prognosis is generally excellent/good/poor, and the 1/5/10-year mortality/survival rate of patients with obesity cardiomyopathy is approximately [#]%.

Diagnosis

Diagnostic Study of Choice

The diagnosis of obesity cardiomyopathy is made when at least [number] of the following [number] diagnostic criteria are met: [criterion 1], [criterion 2], [criterion 3], and [criterion 4].

OR

The diagnosis of obesity cardiomyopathy is based on the [criteria name] criteria, which include [criterion 1], [criterion 2], and [criterion 3].

OR

The diagnosis of obesity cardiomyopathy is based on the [definition name] definition, which includes [criterion 1], [criterion 2], and [criterion 3].

OR

There are no established criteria for the diagnosis of obesity cardiomyopathy.

History and Symptoms

The majority of patients with obesity cardiomyopathy are asymptomatic.

OR

The hallmark of obesity cardiomyopathy is [finding]. A positive history of [finding 1] and [finding 2] is suggestive of obesity cardiomyopathy. The most common symptoms of obesity cardiomyopathy include [symptom 1], [symptom 2], and [symptom 3]. Common symptoms of [disease] include [symptom 1], [symptom 2], and [symptom 3]. Less common symptoms of obesity cardiomyopathy include [symptom 1], [symptom 2], and [symptom 3].

Physical Examination

Patients with obesity cardiomyopathy usually appear [general appearance]. Physical examination of patients with obesity cardiomyopathy is usually remarkable for [finding 1], [finding 2], and [finding 3].

OR

Common physical examination findings of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

OR

The presence of [finding(s)] on physical examination is diagnostic of obesity cardiomyopathy.

OR

The presence of [finding(s)] on physical examination is highly suggestive of obesity cardiomyopathy.

Laboratory Findings

An elevated/reduced concentration of serum/blood/urinary/CSF/other [lab test] is diagnostic of obesity cardiomyopathy.

OR

Laboratory findings consistent with the diagnosis of obesity cardiomyopathy include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

OR

[Test] is usually normal among patients with obesity cardiomyopathy.

OR

Some patients with obesity cardiomyopathy may have elevated/reduced concentration of [test], which is usually suggestive of [progression/complication].

OR

There are no diagnostic laboratory findings associated with obesity cardiomyopathy.

Electrocardiogram

There are no ECG findings associated with obesity cardiomyopathy.

OR

An ECG may be helpful in the diagnosis of obesity cardiomyopathy. Findings on an ECG suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

It should be noted that "Although the QTc may not be extremely increased (≈440 ms) in the obese population, it is important to emphasize that screening for prolonged QT in obesity may have stringent criteria because a prolongation of QTc of >420 ms may be predictive of increased mortality rates in a healthy population followed up for 15 years." [9][10]

X-ray

There are no x-ray findings associated with obesity cardiomyopathy.

OR

An x-ray may be helpful in the diagnosis of obesity cardiomyopathy. Findings on an x-ray suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with obesity cardiomyopathy. However, an x-ray may be helpful in the diagnosis of complications of obesity cardiomyopathy, which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with obesity cardiomyopathy.

OR

Echocardiography/ultrasound may be helpful in the diagnosis of obesity cardiomyopathy. Findings on an echocardiography/ultrasound suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with obesity cardiomyopathy. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of obesity cardiomyopathy, which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with obesity cardiomyopathy.

OR

[Location] CT scan may be helpful in the diagnosis of obesity cardiomyopathy. Findings on CT scan suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with obesity cardiomyopathy. However, a CT scan may be helpful in the diagnosis of complications of obesity cardiomyopathy, which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with obesity cardiomyopathy.

OR

[Location] MRI may be helpful in the diagnosis of obesity cardiomyopathy. Findings on MRI suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with obesity cardiomyopathy. However, a MRI may be helpful in the diagnosis of complications of obesity cardiomyopathy, which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with obesity cardiomyopathy.

OR

[Imaging modality] may be helpful in the diagnosis of obesity cardiomyopathy. Findings on an [imaging modality] suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with obesity cardiomyopathy.

OR

[Diagnostic study] may be helpful in the diagnosis of obesity cardiomyopathy. Findings suggestive of/diagnostic of obesity cardiomyopathy include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for obesity cardiomyopathy include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for obesity cardiomyopathy; the mainstay of therapy is supportive care.

OR

Supportive therapy for obesity cardiomyopathy includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of obesity cardiomyopathy are self-limited and require only supportive care.

OR

obesity cardiomyopathy is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for obesity cardiomyopathy is [therapy].

OR   The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop obesity cardiomyopathy.

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for obesity cardiomyopathy include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for obesity cardiomyopathy depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

Surgical intervention is not recommended for the management of obesity cardiomyopathy.

OR

Surgery is not the first-line treatment option for patients with obesity cardiomyopathy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]

OR

The mainstay of treatment for obesity cardiomyopathy is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].

OR

The feasibility of surgery depends on the stage of [malignancy] at diagnosis.

OR

Surgery is the mainstay of treatment for [disease or malignancy].

Primary Prevention

There are no established measures for the primary prevention of obesity cardiomyopathy.

OR

There are no available vaccines against obesity cardiomyopathy.

OR

Effective measures for the primary prevention of obesity cardiomyopathy include [measure1], [measure2], and [measure3].

OR

[Vaccine name] vaccine is recommended for [patient population] to prevent obesity cardiomyopathy. Other primary prevention strategies include [strategy 1], [strategy 2], and [strategy 3].

Secondary Prevention

There are no established measures for the secondary prevention of obesity cardiomyopathy.

OR

Effective measures for the secondary prevention of obesity cardiomyopathy include [strategy 1], [strategy 2], and [strategy 3].

References

  1. 1.0 1.1 Ebong IA, Goff DC, Rodriguez CJ, Chen H, Bertoni AG (2014). "Mechanisms of heart failure in obesity". Obes Res Clin Pract. 8 (6): e540–8. doi:10.1016/j.orcp.2013.12.005. PMC 4250935. PMID 25434909.
  2. Wong C, Marwick TH (2007). "Obesity cardiomyopathy: pathogenesis and pathophysiology". Nat Clin Pract Cardiovasc Med. 4 (8): 436–43. doi:10.1038/ncpcardio0943. PMID 17653116.
  3. Alpert MA (2001). "Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome". Am J Med Sci. 321 (4): 225–36. doi:10.1097/00000441-200104000-00003. PMID 11307864.
  4. Wilson PW, D'Agostino RB, Sullivan L, Parise H, Kannel WB (2002). "Overweight and obesity as determinants of cardiovascular risk: the Framingham experience". Arch Intern Med. 162 (16): 1867–72. doi:10.1001/archinte.162.16.1867. PMID 12196085.
  5. Robertson J, Schaufelberger M, Lindgren M, Adiels M, Schiöler L, Torén K; et al. (2019). "Higher Body Mass Index in Adolescence Predicts Cardiomyopathy Risk in Midlife". Circulation. 140 (2): 117–125. doi:10.1161/CIRCULATIONAHA.118.039132. PMC 6635044 Check |pmc= value (help). PMID 31132859.
  6. Patel DA, Srinivasan SR, Xu JH, Chen W, Berenson GS (2006). "Adiponectin and its correlates of cardiovascular risk in young adults: the Bogalusa Heart Study". Metabolism. 55 (11): 1551–7. doi:10.1016/j.metabol.2006.06.028. PMID 17046560.
  7. Madani S, De Girolamo S, Muñoz DM, Li RK, Sweeney G (2006). "Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes". Cardiovasc Res. 69 (3): 716–25. doi:10.1016/j.cardiores.2005.11.022. PMID 16376323.
  8. Abel ED, Litwin SE, Sweeney G (2008). "Cardiac remodeling in obesity". Physiol Rev. 88 (2): 389–419. doi:10.1152/physrev.00017.2007. PMC 2915933. PMID 18391168.
  9. Schouten EG, Dekker JM, Meppelink P, Kok FJ, Vandenbroucke JP, Pool J (1991). "QT interval prolongation predicts cardiovascular mortality in an apparently healthy population". Circulation. 84 (4): 1516–23. doi:10.1161/01.cir.84.4.1516. PMID 1914093.
  10. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX; et al. (2006). "Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism". Circulation. 113 (6): 898–918. doi:10.1161/CIRCULATIONAHA.106.171016. PMID 16380542.


Template:WikiDoc Sources