OLR1

Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Oxidized low-density lipoprotein receptor 1 (Ox-LDL receptor 1) also known as lectin-type oxidized LDL receptor 1 (LOX-1) is a protein that in humans is encoded by the OLR1 gene.[1][2]

LOX-1 is the main receptor for oxidized LDL on endothelial cells, macrophages, smooth muscle cells,[3] and other cell types.[4] But minimally oxidized LDL is more readily recognized by the TLR4 receptor, and highly oxidized LDL is more readily recognized by the CD36 receptor.[5]

Function

LOX-1 is a receptor protein which belongs to the C-type lectin superfamily. Its gene is regulated through the cyclic AMP signaling pathway. The protein binds, internalizes and degrades oxidized low-density lipoprotein.

Normally, LOX-1 expression on endothelial cells is low, but tumor necrosis factor alpha, oxidized LDL, blood vessel sheer stress, and other atherosclerotic stimuli substantially increase LOX-1 expression.[4][6]

LOX-1 may be involved in the regulation of Fas-induced apoptosis. Oxidized LDL induces endothelial cell apoptosis through LOX-1 binding.[3] Other ligands for LOX-1 include oxidized high-density lipoprotein, advanced glycation end-products, platelets, and apoptotic cells.[3][6] The binding of platelets to LOX-1 causes a release of vasoconstrictive endothelin, which induces endothelial dysfunction.[6]

This protein may play a role as a scavenger receptor.[2]

Clinical significance

Binding of oxidized LDL to LOX-1 activates NF-κB, leading to monocyte adhesion to enthothelial cells (a pre-requisite for the macrophage foam cell formation of atherosclerosis).[4] Macrophage affinity for unmodified LDL particles is low, but is greatly increased when the LDL particles are oxidized.[7] LDL oxidation occurs in the sub-endothelial space, rather than in the circulation.[7] But oxidized cholesterol from foods cooked at high temperature can also be a source of oxysterols.[5]

Mutations of the OLR1 gene have been associated with atherosclerosis, risk of myocardial infarction, and may modify the risk of Alzheimer's disease.[2] When applied to human macrophage-derived foam cells in vitro, the dietary supplement berberine inhibits the expression of the ORL1 gene in response to oxidized low-density lipoprotein cholesterol,[8] but this has not yet been demonstrated in a living animal or human.

References

  1. Li X, Bouzyk MM, Wang X (Nov 1998). "Assignment of the human oxidized low-density lipoprotein receptor gene (OLR1) to chromosome 12p13.1→p12.3, and identification of a polymorphic CA-repeat marker in the OLR1 gene". Cytogenet Cell Genet. 82 (1–2): 34–6. doi:10.1159/000015059. PMID 9763655.
  2. 2.0 2.1 2.2 "Entrez Gene: OLR1 oxidized low density lipoprotein (lectin-like) receptor 1".
  3. 3.0 3.1 3.2 Pirillo A, Norata GD, Catapano AL (2013). "LOX-1, OxLDL, and atherosclerosis". Mediators of Inflammation. 2013: 152786. doi:10.1155/2013/152786. PMC 3723318. PMID 23935243.
  4. 4.0 4.1 4.2 Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P (2013). "LOX-1 in atherosclerosis: biological functions and pharmacological modifiers". Cellular and Molecular Life Sciences. 70 (16): 2859–2872. doi:10.1007/s00018-012-1194-z. PMC 4142049. PMID 23124189.
  5. 5.0 5.1 Zmysłowski A, Szterk A (2017). "Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols". Lipids in Health and Disease. 16 (1): 188. doi:10.1186/s12944-017-0579-2. PMC 5625595. PMID 28969682.
  6. 6.0 6.1 6.2 Kakutani M, Masaki T, Sawamura T (2000). "A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1". Proceedings of the National Academy of Sciences of the United States of America. 97 (1): 360–364. doi:10.1016/j.biochi.2016.10.010. PMC 26668. PMID 10618423.
  7. 7.0 7.1 Brites F, Martin M, Guillas I, Kontush A (2017). "Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit". BBA Clinical. 8: 66–77. doi:10.1016/j.bbacli.2017.07.002. PMC 5597817. PMID 28936395.
  8. Guan S, Wang B, Li W, Guan J, Fang X (2010). "Effects of berberine on expression of LOX-1 and SR-BI in human macrophage-derived foam cells induced by ox-LDL". Am J Chin Med. 38 (6): 1161–9. doi:10.1142/s0192415x10008548. PMID 21061468.

Further reading