Monoamine oxidase B: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS (v470))
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Use dmy dates|date=February 2015}}
{{PBB_Controls
{{Infobox_gene}}
| update_page = yes
'''Monoamine oxidase B''', also known as '''MAOB''', is an [[enzyme]] that in humans is encoded by the ''MAOB'' [[gene]].
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
The protein encoded by this gene belongs to the flavin [[monoamine oxidase]] family. It is an [[enzyme]] located in the [[outer mitochondrial membrane]]. It catalyzes the [[oxidative deamination]] of biogenic and [[xenobiotic]] [[amine]]s and plays an important role in the catabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. This protein preferentially degrades [[benzylamine]] and [[phenylethylamine]].<ref>{{cite web | title = Entrez Gene: MAOB monoamine oxidase B| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4129| accessdate = }}</ref> Like [[MAOA]], it also degrades [[dopamine]].
{{GNF_Protein_box
| image = PBB_Protein_MAOB_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1gos.
| PDB = {{PDB2|1gos}}, {{PDB2|1oj9}}, {{PDB2|1oja}}, {{PDB2|1ojb}}, {{PDB2|1ojc}}, {{PDB2|1ojd}}, {{PDB2|1s2q}}, {{PDB2|1s2y}}, {{PDB2|1s3b}}, {{PDB2|1s3e}}, {{PDB2|2bk3}}, {{PDB2|2bk4}}, {{PDB2|2bk5}}, {{PDB2|2byb}}, {{PDB2|2c64}}, {{PDB2|2c65}}, {{PDB2|2c66}}, {{PDB2|2c67}}, {{PDB2|2c70}}, {{PDB2|2c72}}, {{PDB2|2c73}}, {{PDB2|2c75}}, {{PDB2|2c76}}
| Name = Monoamine oxidase B
| HGNCid = 6834
| Symbol = MAOB
| AltSymbols =; MGC26382
| OMIM = 309860
| ECnumber = 
| Homologene = 20251
| MGIid = 96916
| GeneAtlas_image1 = PBB_GE_MAOB_204041_at_tn.png
| Function = {{GNF_GO|id=GO:0008131 |text = amine oxidase activity}} {{GNF_GO|id=GO:0009055 |text = electron carrier activity}} {{GNF_GO|id=GO:0016491 |text = oxidoreductase activity}}
| Component = {{GNF_GO|id=GO:0005739 |text = mitochondrion}} {{GNF_GO|id=GO:0005740 |text = mitochondrial envelope}} {{GNF_GO|id=GO:0005743 |text = mitochondrial inner membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}}
  | Process = {{GNF_GO|id=GO:0006118 |text = electron transport}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 4129
    | Hs_Ensembl = ENSG00000069535
    | Hs_RefseqProtein = NP_000889
    | Hs_RefseqmRNA = NM_000898
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = X
    | Hs_GenLoc_start = 43510802
    | Hs_GenLoc_end = 43626637
    | Hs_Uniprot = P27338
    | Mm_EntrezGene = 109731
    | Mm_Ensembl = ENSMUSG00000040147
    | Mm_RefseqmRNA = NM_172778
    | Mm_RefseqProtein = NP_766366
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = X
    | Mm_GenLoc_start = 15866998
    | Mm_GenLoc_end = 15927979
    | Mm_Uniprot = Q14CG9
  }}
}}
'''Monoamine oxidase B''', also known as '''MAOB''', is a human [[gene]].


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
==Structure==
{{PBB_Summary
Monoamine oxidase B has a hydrophobic bipartite elongated cavity that (for the "open" conformation) occupies a combined volume close to 700 [[Ångström|Å]]<sup>3</sup>. h[[Monoamine oxidase A|MAO-A]] has a single cavity that exhibits a rounder shape and is larger in volume than the "substrate cavity" of hMAO-B.<ref name="pmid17573034">{{cite journal | vauthors = Edmondson DE, Binda C, Mattevi A | title = Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B | journal = Arch. Biochem. Biophys. | volume = 464 | issue = 2 | pages = 269–76 | date = August 2007 | pmid = 17573034 | pmc = 1993809 | doi = 10.1016/j.abb.2007.05.006 }}</ref>
| section_title =  
| summary_text = The protein encoded by this gene belongs to the flavin [[monoamine oxidase]] family. It is an [[enzyme]] located in the [[mitochondrial]] [[outer membrane]]. It catalyzes the [[oxidative deamination]] of biogenic and [[xenobiotic]] [[amine]]s and plays an important role in the metabolism of neuroactive and vasoactive amines in the central nervous sysytem and peripheral tissues. This protein preferentially degrades [[benzylamine]] and [[phenylethylamine]].<ref>{{cite web | title = Entrez Gene: MAOB monoamine oxidase B| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=4129| accessdate = }}</ref>
}}


==References==
The first cavity of hMAO-B has been termed the ''entrance cavity'' (290 Å<sup>3</sup>), the second ''substrate cavity'' or ''active site cavity'' (~390 Å<sup>3</sup>) – between both an [[isoleucine]]199 side-chain serves as a ''gate''. Depending on the substrate or bound inhibitor, it can exist in either an open or a closed form, which has been shown to be important in defining the inhibitor specificity of hMAO B. At the end of the substrate cavity is the [[flavin adenine dinucleotide|FAD]] coenzyme with sites for favorable amine binding about the flavin involving two nearly parallel tyrosyl (398 and 435) residues that form what has been termed an ''aromatic cage''.<ref name="pmid17573034"/>
{{reflist|2}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal  | author=Edmondson DE, Binda C, Mattevi A |title=The FAD binding sites of human monoamine oxidases A and B. |journal=Neurotoxicology |volume=25 |issue= 1-2 |pages= 63-72 |year= 2004 |pmid= 14697881 |doi= 10.1016/S0161-813X(03)00114-1 }}
*{{cite journal  | author=Kumar MJ, Andersen JK |title=Perspectives on MAO-B in aging and neurological disease: where do we go from here? |journal=Mol. Neurobiol. |volume=30 |issue= 1 |pages= 77-89 |year= 2004 |pmid= 15247489 |doi=  }}
*{{cite journal  | author=Ghozlan A, Munnich A |title=[MAOB: a modifier gene in phenylketonuria?] |journal=Med Sci (Paris) |volume=20 |issue= 10 |pages= 929-32 |year= 2004 |pmid= 15461973 |doi=  }}
*{{cite journal  | author=Zhu QS, Grimsby J, Chen K, Shih JC |title=Promoter organization and activity of human monoamine oxidase (MAO) A and B genes. |journal=J. Neurosci. |volume=12 |issue= 11 |pages= 4437-46 |year= 1992 |pmid= 1432104 |doi=  }}
*{{cite journal  | author=Grimsby J, Chen K, Wang LJ, ''et al.'' |title=Human monoamine oxidase A and B genes exhibit identical exon-intron organization. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=88 |issue= 9 |pages= 3637-41 |year= 1991 |pmid= 2023912 |doi=  }}
*{{cite journal  | author=Bach AW, Lan NC, Johnson DL, ''et al.'' |title=cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 13 |pages= 4934-8 |year= 1988 |pmid= 3387449 |doi=  }}
*{{cite journal  | author=Kochersperger LM, Parker EL, Siciliano M, ''et al.'' |title=Assignment of genes for human monoamine oxidases A and B to the X chromosome. |journal=J. Neurosci. Res. |volume=16 |issue= 4 |pages= 601-16 |year= 1987 |pmid= 3540317 |doi= 10.1002/jnr.490160403 }}
*{{cite journal  | author=Wyatt RJ, Murphy DL, Belmaker R, ''et al.'' |title=Reduced monoamine oxidase activity in platelets: a possible genetic marker for vulnerability to schizophrenia. |journal=Science |volume=179 |issue= 76 |pages= 916-8 |year= 1973 |pmid= 4687789 |doi=  }}
*{{cite journal  | author=Goldin LR, Gershon ES, Lake CR, ''et al.'' |title=Segregation and linkage studies of plasma dopamine-beta-hydroxylase (DBH), erythrocyte catechol-O-methyltransferase (COMT), and platelet monoamine oxidase (MAO): possible linkage between the ABO locus and a gene controlling DBH activity. |journal=Am. J. Hum. Genet. |volume=34 |issue= 2 |pages= 250-62 |year= 1982 |pmid= 6951409 |doi=  }}
*{{cite journal  | author=Denney RM, Fritz RR, Patel NT, Abell CW |title=Human liver MAO-A and MAO-B separated by immunoaffinity chromatography with MAO-B-specific monoclonal antibody. |journal=Science |volume=215 |issue= 4538 |pages= 1400-3 |year= 1982 |pmid= 7063850 |doi=  }}
*{{cite journal  | author=Raddatz R, Parini A, Lanier SM |title=Imidazoline/guanidinium binding domains on monoamine oxidases. Relationship to subtypes of imidazoline-binding proteins and tissue-specific interaction of imidazoline ligands with monoamine oxidase B. |journal=J. Biol. Chem. |volume=270 |issue= 46 |pages= 27961-8 |year= 1996 |pmid= 7499273 |doi=  }}
*{{cite journal  | author=Woo JC, Silverman RB |title=Observation of two different chromophores in the resting state of monoamine oxidase B by fluorescence spectroscopy. |journal=Biochem. Biophys. Res. Commun. |volume=202 |issue= 3 |pages= 1574-8 |year= 1994 |pmid= 8060341 |doi= 10.1006/bbrc.1994.2111 }}
*{{cite journal  | author=Wu HF, Chen K, Shih JC |title=Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. |journal=Mol. Pharmacol. |volume=43 |issue= 6 |pages= 888-93 |year= 1993 |pmid= 8316221 |doi=  }}
*{{cite journal  | author=Chen K, Wu HF, Shih JC |title=The deduced amino acid sequences of human platelet and frontal cortex monoamine oxidase B are identical. |journal=J. Neurochem. |volume=61 |issue= 1 |pages= 187-90 |year= 1993 |pmid= 8515265 |doi=  }}
*{{cite journal  | author=Fowler JS, Volkow ND, Wang GJ, ''et al.'' |title=Inhibition of monoamine oxidase B in the brains of smokers. |journal=Nature |volume=379 |issue= 6567 |pages= 733-6 |year= 1996 |pmid= 8602220 |doi= 10.1038/379733a0 }}
*{{cite journal  | author=Lenders JW, Eisenhofer G, Abeling NG, ''et al.'' |title=Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. |journal=J. Clin. Invest. |volume=97 |issue= 4 |pages= 1010-9 |year= 1996 |pmid= 8613523 |doi=  }}
*{{cite journal  | author=Cesura AM, Gottowik J, Lahm HW, ''et al.'' |title=Investigation on the structure of the active site of monoamine oxidase-B by affinity labeling with the selective inhibitor lazabemide and by site-directed mutagenesis. |journal=Eur. J. Biochem. |volume=236 |issue= 3 |pages= 996-1002 |year= 1996 |pmid= 8665924 |doi=  }}
*{{cite journal  | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791-806 |year= 1997 |pmid= 8889548 |doi=  }}
*{{cite journal  | author=Saura J, Bleuel Z, Ulrich J, ''et al.'' |title=Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. |journal=Neuroscience |volume=70 |issue= 3 |pages= 755-74 |year= 1997 |pmid= 9045087 |doi=  }}
*{{cite journal  | author=Checkoway H, Franklin GM, Costa-Mallen P, ''et al.'' |title=A genetic polymorphism of MAO-B modifies the association of cigarette smoking and Parkinson's disease. |journal=Neurology |volume=50 |issue= 5 |pages= 1458-61 |year= 1998 |pmid= 9596006 |doi=  }}
}}
{{refend}}


{{protein-stub}}
==Differences between MAOA and MAOB==
MAO-A is involved in the metabolism of [[tyramine]]; inhibition, in particular irreversible inhibition of MAO-A can result in a dangerous pressor effect when foods high in tyramine are consumed such as cheeses (informally known as the "cheese effect"). MAO-A is involved in the metabolism of serotonin, noradrenaline and dopamine whereas MAO-B metabolises the dopamine neurotransmitter.<ref name="Youdim-2004">{{cite journal | vauthors = Youdim MB, Weinstock M | title = Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation | journal = Neurotoxicology | volume = 25 | issue = 1–2 | pages = 243–50 | date = January 2004 | pmid = 14697899 | doi = 10.1016/S0161-813X(03)00103-7 }}</ref> MAO-B is an enzyme on the outer mitochondrial membrane and catalyzes the oxidation of [[arylalkylamine]] neurotransmitters<ref name="Binda-2004">{{cite journal | vauthors = Binda C, Hubálek F, Li M, Herzig Y, Sterling J, Edmondson DE, Mattevi A | title = Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class | journal = J. Med. Chem. | volume = 47 | issue = 7 | pages = 1767–74 | date = March 2004 | pmid = 15027868 | doi = 10.1021/jm031087c }}</ref>


{{WikiDoc Help Menu}}
Monoamine oxidase A (MAOA) generally metabolizes tyramine, [[norepinephrine]] (NE), [[serotonin]] (5-HT), and [[dopamine]] (DA) (and other less clinically relevant chemicals). In contrast, Monoamine oxidase B (MAOB) mainly metabolizes dopamine (DA) (and other less clinically relevant chemicals). The differences between the substrate selectivity of the two enzymes are utilized clinically when treating specific disorders: Monoamine oxidase A inhibitors have been typically used in the treatment of depression, and monoamine oxidase B inhibitors are typically used in the treatment of Parkinson's disease.<ref name="pmid8313400">{{cite journal | vauthors = Nolen WA, Hoencamp E, Bouvy PF, Haffmans PM | title = Reversible monoamine oxidase-A inhibitors in resistant major depression | journal = Clin Neuropharmacol | volume = 16 | issue = Suppl 2 | pages = S69–76 | year = 1993 | pmid = 8313400 | doi =  }}</ref><ref name="pmid22110357">{{cite journal | vauthors = Riederer P, Laux G | title = MAO-inhibitors in Parkinson's Disease | journal = Exp Neurobiol | volume = 20 | issue = 1 | pages = 1–17 | date = March 2011 | pmid = 22110357 | pmc = 3213739 | doi = 10.5607/en.2011.20.1.1 }}</ref> Nonspecific (i.e. MAOA/B combined) inhibitors can pose problems when taken concomitantly with tyramine-containing foods such as cheese, because the drug's inhibition of MAOA causes a dangerous elevation of serum tyramine levels, which can lead to hypertensive symptoms. Selective MAOB inhibitors bypass this problem by preferentially inhibiting MAOB, which mostly metabolizes DA. If MAOB is inhibited, then more DA is available for proper neuronal function, especially in Parkinson's Disease.
{{WikiDoc Sources}}
 
==Roles in disease and aging==
[[Alzheimer's disease]] and [[Parkinson's disease]] are both associated with elevated levels of MAO-B in the brain.<ref name="pmid7816197">{{cite journal | vauthors = Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Löffler J, Richards JG | title = Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography | journal = Neuroscience | volume = 62 | issue = 1 | pages = 15–30 | date = September 1994 | pmid = 7816197 | doi = 10.1016/0306-4522(94)90311-5 }}</ref><ref name="pmid19526285">{{cite journal | vauthors = Mallajosyula JK, Chinta SJ, Rajagopalan S, Nicholls DG, Andersen JK | title = Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson's disease | journal = Neurotox Res | volume = 16 | issue = 3 | pages = 186–93 | date = October 2009 | pmid = 19526285 | pmc = 2727365 | doi = 10.1007/s12640-009-9032-2 }}</ref> The normal activity of MAO-B creates [[reactive oxygen species]], which directly damage cells.<ref name="pmid17447416">{{cite journal | vauthors = Nagatsu T, Sawada M | title = Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells | journal = J. Neural Transm. Suppl. | volume = 71 | issue = 71 | pages = 53–65 | year = 2006 | pmid = 17447416 | doi = 10.1007/978-3-211-33328-0_7 | isbn = 978-3-211-33327-3 | series = Journal of Neural Transmission. Supplementa }}</ref> MAO-B levels have been found to increase with age, suggesting a role in [[memory and aging|natural age related cognitive decline]] and the increased likelihood of developing neurological diseases later in life.<ref name="pmid15247489">{{cite journal | vauthors = Kumar MJ, Andersen JK | title = Perspectives on MAO-B in aging and neurological disease: where do we go from here? | journal = Mol. Neurobiol. | volume = 30 | issue = 1 | pages = 77–89 | date = August 2004 | pmid = 15247489 | doi = 10.1385/MN:30:1:077 }}</ref> More active [[Polymorphism (biology)|polymorphisms]] of the MAOB gene have been linked to negative emotionality, and suspected as an underlying factor in [[Depression (mood)|depression]].<ref name="pmid19657584">{{cite journal | vauthors = Dlugos AM, Palmer AA, de Wit H | title = Negative emotionality: monoamine oxidase B gene variants modulate personality traits in healthy humans | journal = J Neural Transm | volume = 116 | issue = 10 | pages = 1323–34 | date = October 2009 | pmid = 19657584 | pmc = 3653168 | doi = 10.1007/s00702-009-0281-2 }}</ref> Activity of MAO-B has also been shown to play a role in stress-induced cardiac damage.<ref name="pmid20869994">{{cite journal | vauthors = Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N | title = Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury | journal = Biochim. Biophys. Acta | volume = 1813 | issue = 7 | pages = 1323–32 | date = July 2011 | pmid = 20869994 | pmc = 3030628 | doi = 10.1016/j.bbamcr.2010.09.010 }}</ref><ref name="pmid23581564">{{cite journal | vauthors = Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW, Bedja D, De Mario A, Chen K, Gabrielson KL, Lindsey ML, Pacak K, Takimoto E, Shih JC, Kass DA, Di Lisa F, Paolocci N | title = Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts | journal = Antioxid. Redox Signal. | volume = 20 | issue = 2 | pages = 267–80 | date = January 2014 | pmid = 23581564 | pmc = 3887464 | doi = 10.1089/ars.2012.4616 }}</ref>
 
===Animal models===
Transgenic mice that are unable to produce MAO-B are shown to be resistant to a mouse model of Parkinson's disease.<ref name="pmid10591056">{{cite journal | vauthors = Shih JC, Chen K | title = MAO-A and -B gene knock-out mice exhibit distinctly different behavior | journal = Neurobiology (Bp) | volume = 7 | issue = 2 | pages = 235–46 | year = 1999 | pmid = 10591056 | doi =  }}</ref><ref name="pmid9326944">{{cite journal | vauthors = Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC | title = Increased stress response and beta-phenylethylamine in MAOB-deficient mice. | journal = Nature Genetics | volume = 17 | issue = 2 | pages = 206–10 | date = October 1997 | pmid = 9326944 | doi = 10.1038/ng1097-206 }}</ref><ref>{{cite journal | vauthors = Shih JC, Chen K, Ridd MJ | title = Monoamine oxidase: from genes to behavior. | journal = Annual Review of Neuroscience | volume = 22 | pages = 197–217 | year = 1999 | pmid = 10202537 | pmc = 2844879 | doi = 10.1146/annurev.neuro.22.1.197 }}</ref>  They also demonstrate increased responsiveness to stress (as with MAO-A [[Knockout mouse|knockout mice]])<ref name="Shih 21–30">{{cite journal | vauthors = Shih JC | title = Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B. | journal = Neurotoxicology | volume = 25 | issue = 1–2 | pages = 21–30 | date = January 2004 | pmid = 14697877 | doi = 10.1016/s0161-813x(03)00112-8 }}</ref>  and increased [[Phenethylamine|β-PEA]].<ref name="pmid9326944" /><ref name="Shih 21–30"/>  In addition, they exhibit behavioral disinhibition and reduced anxiety-like behaviors.<ref>{{cite journal | vauthors = Bortolato M, Godar SC, Davarian S, Chen K, Shih JC | title = Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice. | journal = Neuropsychopharmacology | volume = 34 | issue = 13 | pages = 2746–57 | date = December 2009 | pmid = 19710633 | pmc = 2783894 | doi = 10.1038/npp.2009.118 }}</ref>
 
Inhibition of MAO-B in rats has been shown to prevent many age-related biological changes such as optic nerve degeneration, and extend average lifespan by up to 39%.<ref name="pmid23082958">{{cite journal | vauthors = Nebbioso M, Pascarella A, Cavallotti C, Pescosolido N | title = Monoamine oxidase enzymes and oxidative stress in the rat optic nerve: age-related changes | journal = Int J Exp Pathol | volume = 93 | issue = 6 | pages = 401–5 | date = December 2012 | pmid = 23082958 | pmc = 3521895 | doi = 10.1111/j.1365-2613.2012.00832.x }}</ref><ref name="pmid8423709">{{cite journal | vauthors = Kitani K, Kanai S, Sato Y, Ohta M, Ivy GO, Carrillo MC | title = Chronic treatment of (-)deprenyl prolongs the life span of male Fischer 344 rats. Further evidence | journal = Life Sci. | volume = 52 | issue = 3 | pages = 281–8 | year = 1993 | pmid = 8423709 | doi = 10.1016/0024-3205(93)90219-S }}</ref>
 
===Effects of deficiency in humans===
While people lacking the gene for MAO-A display [[mental retardation]] and behavioral abnormalities, people lacking the gene for MAO-B display no abnormalities except elevated [[phenethylamine]] levels in urine, raising the question of whether MAO-B is actually a necessary enzyme. Newer research indicates the importance of phenethylamine and other [[trace amine]]s, which are now known to regulate [[catecholamine]] and [[serotonin]] [[neurotransmission]] through the same receptor as [[amphetamine]], [[TAAR1]].<ref name="pmid8613523">{{cite journal | vauthors = Lenders JW, Eisenhofer G, Abeling NG, Berger W, Murphy DL, Konings CH, Wagemakers LM, Kopin IJ, Karoum F, van Gennip AH, Brunner HG | title = Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes | journal = J. Clin. Invest. | volume = 97 | issue = 4 | pages = 1010–9 | date = February 1996 | pmid = 8613523 | pmc = 507147 | doi = 10.1172/JCI118492 }}</ref><ref name="Miller">{{cite journal | vauthors = Miller GM | title = The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity | journal = J. Neurochem. | volume = 116 | issue = 2 | pages = 164–176 | date = January 2011 | pmid = 21073468 | pmc = 3005101 | doi = 10.1111/j.1471-4159.2010.07109.x }}</ref>
 
The prophylactic use of MAO-B inhibitors to slow natural human aging in otherwise healthy individuals has been proposed, but remains a highly controversial topic.<ref name="pmid20150659">{{cite journal | vauthors = Miklya I | title = [Slowing the age-induced decline of brain function with prophylactic use of (−)-deprenyl (Selegiline, Jumex). Current international view and conclusions 25 years after the Knoll's proposal] | language = Hungarian | journal = Neuropsychopharmacol Hung | volume = 11 | issue = 4 | pages = 217–25 | date = December 2009 | pmid = 20150659 | doi =  }}</ref><ref name="pmid15246996">{{cite journal | vauthors = Ukraintseva SV, Arbeev KG, Michalsky AI, Yashin AI | title = Antiaging treatments have been legally prescribed for approximately thirty years | journal = Ann. N. Y. Acad. Sci. | volume = 1019 | issue =  | pages = 64–9 | date = June 2004 | pmid = 15246996 | doi = 10.1196/annals.1297.014 }}</ref>
 
==Selective inhibitors==
[[File:Geiparvarin.svg|210px|thumb|middle|Geiparvarin]]
[[File:(+)-Catechin.png|170px|thumb|right|(+)-Catechin]]
[[File:MAO-B inhibitors.png|570px|thumb|right|Structural formulae of high-affinity reversible MAO inhibitors selective for type B]]
Species-dependent divergences may hamper the extrapolation of inhibitor potencies.<ref name="pmid17034132">{{cite journal | vauthors = Novaroli L, Daina A, Favre E, Bravo J, Carotti A, Leonetti F, Catto M, Carrupt PA, Reist M | title = Impact of species-dependent differences on screening, design, and development of MAO B inhibitors | journal = J. Med. Chem. | volume = 49 | issue = 21 | pages = 6264–72 | date = October 2006 | pmid = 17034132 | doi = 10.1021/jm060441e }}</ref>
 
===Reversible===
 
====Natural====
 
* [[Geiparvarin]]<ref name="pmid12443774">{{cite journal | vauthors = Carotti A, Carrieri A, Chimichi S, Boccalini M, Cosimelli B, Gnerre C, Carotti A, Carrupt PA, Testa B | title = Natural and synthetic geiparvarins are strong and selective MAO-B inhibitors. Synthesis and SAR studies | journal = Bioorg. Med. Chem. Lett. | volume = 12 | issue = 24 | pages = 3551–5 | date = December 2002 | pmid = 12443774 | doi = 10.1016/S0960-894X(02)00798-9 | url =  }}</ref>
* [[Desmethoxyyangonin]],<ref name="pmid9832350">{{cite journal | vauthors = Uebelhack R, Franke L, Schewe HJ | title = Inhibition of platelet MAO-B by kava pyrone-enriched extract from Piper methysticum Forster (kava-kava) | journal = Pharmacopsychiatry | volume = 31 | issue = 5 | pages = 187–92 | date = September 1998 | pmid = 9832350 | doi = 10.1055/s-2007-979325 | url =  }}</ref> a constituent of [[kava]] extract; modest affinity
* [[Catechin]] and [[catechin#Chemistry|epicatechin]]
* [[Garlic]]<ref>{{Cite journal|title = Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of garlic extract in mice|journal = Indian Journal of Pharmacology|date = 2008-08-01|issn = 0253-7613|pmc = 2792615|pmid = 20040952|pages = 175–179|volume = 40|issue = 4|doi = 10.4103/0253-7613.43165|first = Dinesh|last = Dhingra|first2 = Vaibhav|last2 = Kumar}}</ref>
 
==== Synthetic ====
* [[Safinamide]] and analogs<ref name="pmid17824599">{{cite journal | vauthors = Leonetti F, Capaldi C, Pisani L, Nicolotti O, Muncipinto G, Stefanachi A, Cellamare S, Caccia C, Carotti A | title = Solid-phase synthesis and insights into structure-activity relationships of safinamide analogues as potent and selective inhibitors of type B monoamine oxidase | journal = Journal of Medicinal Chemistry | volume = 50 | issue = 20 | pages = 4909–16 | date = October 2007 | pmid = 17824599 | doi = 10.1021/jm070725e | url =  }}</ref>
* 5''H''-Indeno[1,2-c]pyridazin-5-ones<ref name="pmid17034132"/><ref name="pmid16759116">compound #2d, {{cite journal | vauthors = Frédérick R, Dumont W, Ooms F, Aschenbach L, Van der Schyf CJ, Castagnoli N, Wouters J, Krief A | title = Synthesis, structural reassignment, and biological activity of type B MAO inhibitors based on the 5H-indeno[1,2-c]pyridazin-5-one core | journal = J. Med. Chem. | volume = 49 | issue = 12 | pages = 3743–7 |date=June 2006 | pmid = 16759116 | doi = 10.1021/jm051091j }}</ref><ref name="pmid17910428">{{cite journal | vauthors = Carotti A, Catto M, Leonetti F, Campagna F, Soto-Otero R, Méndez-Alvarez E, Thull U, Testa B, Altomare C | title = Synthesis and monoamine oxidase inhibitory activity of new pyridazine-, pyrimidine- and 1,2,4-triazine-containing tricyclic derivatives | journal = Journal of Medicinal Chemistry | volume = 50 | issue = 22 | pages = 5364–71 | date = November 2007 | pmid = 17910428 | doi = 10.1021/jm070728r | url =  }}</ref> (see 3d model)
* Substituted [[chalcone]]s<ref name="pmid19378991">{{cite journal | vauthors = Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yáñez M, Orallo F, Ortuso F, Alcaro S | title = Chalcones: a valid scaffold for monoamine oxidases inhibitors | journal = J. Med. Chem. | volume = 52 | issue = 9 | pages = 2818–24 | date = May 2009 | pmid = 19378991 | doi = 10.1021/jm801590u }}</ref>
* 2-(''N''-Methyl-''N''-benzylaminomethyl)-1''H''-pyrrole<ref name="pmid12620068">compound #21, {{cite journal | vauthors = Silvestri R, La Regina G, De Martino G, Artico M, Befani O, Palumbo M, Agostinelli E, Turini P | title = Simple, potent, and selective pyrrole inhibitors of monoamine oxidase types A and B | journal = J. Med. Chem. | volume = 46 | issue = 6 | pages = 917–20 | date = March 2003 | pmid = 12620068 | doi = 10.1021/jm0256124 }}</ref>
* 1-(4-Arylthiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazine<ref name="pmid20715818">compound # (''R'')-8b, {{cite journal | vauthors = Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Yáñez M, Orallo F, Sanna ML, Gallinella B, Cirilli R | title = Synthesis, stereochemical separation, and biological evaluation of selective inhibitors of human MAO-B: 1-(4-arylthiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazines | journal = J. Med. Chem. | volume = 53 | issue = 17 | pages = 6516–20 | date = September 2010 | pmid = 20715818 | doi = 10.1021/jm100120s }}</ref>
* 2-Thiazolylhydrazone<ref name="pmid17253676">compound #18, {{cite journal | vauthors = Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Cardia MC, Distinto S | title = Selective inhibitory activity against MAO and molecular modeling studies of 2-thiazolylhydrazone derivatives | journal = J. Med. Chem. | volume = 50 | issue = 4 | pages = 707–12 | date = February 2007 | pmid = 17253676 | doi = 10.1021/jm060869d }}</ref>
* 3,5-Diaryl [[pyrazole]]<ref name="pmid17266193">compound #3g, {{cite journal | vauthors = Chimenti F, Fioravanti R, Bolasco A, Manna F, Chimenti P, Secci D, Befani O, Turini P, Ortuso F, Alcaro S | title = Monoamine oxidase isoform-dependent tautomeric influence in the recognition of 3,5-diaryl pyrazole inhibitors | journal = J. Med. Chem. | volume = 50 | issue = 3 | pages = 425–8 | date = February 2007 | pmid = 17266193 | doi = 10.1021/jm060868l }}</ref>
* [[Pyrazoline]] derivatives<ref name="pmid16279769">compound #(''S'')-1, {{cite journal | vauthors = Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Cirilli R, La Torre F, Cardia MC, Distinto S | title = Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)- pyrazole derivatives | journal = J. Med. Chem. | volume = 48 | issue = 23 | pages = 7113–22 | date = November 2005 | pmid = 16279769 | doi = 10.1021/jm040903t }}</ref><ref name="pmid21377879">{{cite journal | vauthors = Mishra N, Sasmal D | title = Development of selective and reversible pyrazoline based MAO-B inhibitors: virtual screening, synthesis and biological evaluation | journal = Bioorg. Med. Chem. Lett. | volume = 21 | issue = 7 | pages = 1969–73 | date = April 2011 | pmid = 21377879 | doi = 10.1016/j.bmcl.2011.02.030 }}</ref>
* Several [[coumarin]] derivatives<ref name = "pmid16884303">compound #41, {{cite journal | vauthors = Catto M, Nicolotti O, Leonetti F, Carotti A, Favia AD, Soto-Otero R, Méndez-Alvarez E, Carotti A | title = Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches | journal = Journal of Medicinal Chemistry | volume = 49 | issue = 16 | pages = 4912–25 | year = 2006 | pmid = 16884303 | doi = 10.1021/jm060183l | url = }}</ref> and #C19*<ref name="pmid17034132"/> (see 3d model)
* Phenylcoumarins, extremely subtype selective<ref name="pmid21684743">compound #2, {{cite journal | vauthors = Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L, Viña D | title = MAO inhibitory activity modulation: 3-Phenylcoumarins versus 3-benzoylcoumarins | journal = Bioorg. Med. Chem. Lett. | volume = 21 | issue = 14 | pages = 4224–7 |date=July 2011 | pmid = 21684743 | doi = 10.1016/j.bmcl.2011.05.074 | url = }}</ref> and further analogs<ref name="pmid20659799">{{cite journal | vauthors = Matos MJ, Viña D, Janeiro P, Borges F, Santana L, Uriarte E | title = New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors | journal = Bioorg. Med. Chem. Lett. | volume = 20 | issue = 17 | pages = 5157–60 | date = September 2010 | pmid = 20659799 | doi = 10.1016/j.bmcl.2010.07.013 }}</ref><ref name="pmid19628387">{{cite journal | vauthors = Matos MJ, Viña D, Picciau C, Orallo F, Santana L, Uriarte E | title = Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors | journal = Bioorg. Med. Chem. Lett. | volume = 19 | issue = 17 | pages = 5053–5 | date = September 2009 | pmid = 19628387 | doi = 10.1016/j.bmcl.2009.07.039 }}</ref><ref name="pmid19423346">{{cite journal | vauthors = Matos MJ, Viña D, Quezada E, Picciau C, Delogu G, Orallo F, Santana L, Uriarte E | title = A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors | journal = Bioorg. Med. Chem. Lett. | volume = 19 | issue = 12 | pages = 3268–70 | date = June 2009 | pmid = 19423346 | doi = 10.1016/j.bmcl.2009.04.085 }}</ref> (see 3d model)
* [[Chromone]]-3-phenylcarboxamides<ref name="pmid21194943">compound #9, #12, {{cite journal | vauthors = Gaspar A, Reis J, Fonseca A, Milhazes N, Viña D, Uriarte E, Borges F | title = Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors | journal = Bioorg. Med. Chem. Lett. | volume = 21 | issue = 2 | pages = 707–9 | date = January 2011 | pmid = 21194943 | doi = 10.1016/j.bmcl.2010.11.128 }}</ref>
* [[Isatin]]s<ref name="pmid21134756">compound #9i, {{cite journal | vauthors = Manley-King CI, Bergh JJ, Petzer JP | title = Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues | journal = Bioorg. Med. Chem. | volume = 19 | issue = 1 | pages = 261–74 | date = January 2011 | pmid = 21134756 | doi = 10.1016/j.bmc.2010.11.028 }}</ref>
* [[Phthalimide]]s<ref name="pmid21778064">compound #5c, {{cite journal | vauthors = Manley-King CI, Bergh JJ, Petzer JP | title = Inhibition of monoamine oxidase by C5-substituted phthalimide analogues | journal = Bioorg. Med. Chem. | volume = 19 | issue = 16 | pages = 4829–40 | date = August 2011 | pmid = 21778064 | doi = 10.1016/j.bmc.2011.06.070 }}</ref>
* 8-Benzyloxycaffeines<ref name="pmid21621312">{{cite journal | vauthors = Strydom B, Bergh JJ, Petzer JP | title = 8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase | journal = Eur J Med Chem | volume = 46 | issue = 8 | pages = 3474–85 | date = August 2011 | pmid = 21621312 | doi = 10.1016/j.ejmech.2011.05.014 }}</ref><ref name="pmid20093036">{{cite journal | vauthors = Strydom B, Malan SF, Castagnoli N, Bergh JJ, Petzer JP | title = Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues | journal = Bioorg. Med. Chem. | volume = 18 | issue = 3 | pages = 1018–28 | date = February 2010 | pmid = 20093036 | doi = 10.1016/j.bmc.2009.12.064 }}</ref> and CSC analogs<ref name="pmid16442801">{{cite journal | vauthors = Vlok N, Malan SF, Castagnoli N, Bergh JJ, Petzer JP | title = Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC) | journal = Bioorg. Med. Chem. | volume = 14 | issue = 10 | pages = 3512–21 | date = May 2006 | pmid = 16442801 | doi = 10.1016/j.bmc.2006.01.011 }}</ref>
* (''E,E'')-8-(4-phenylbutadien-1-yl)caffeines,<ref name="pmid18723354">{{cite journal | vauthors = Pretorius J, Malan SF, Castagnoli N, Bergh JJ, Petzer JP | title = Dual inhibition of monoamine oxidase B and antagonism of the adenosine A(2A) receptor by (E,E)-8-(4-phenylbutadien-1-yl)caffeine analogues | journal = Bioorganic & Medicinal Chemistry | volume = 16 | issue = 18 | pages = 8676–84 | date = September 2008 | pmid = 18723354 | doi = 10.1016/j.bmc.2008.07.088 | url =  }}</ref> with [[Adenosine A2A receptor|A<sub>2A</sub>]] antagonistic component
* Indazole- and Indole-5-carboxamides<ref>{{cite journal | last1 = Tzvetkov | display-authors = etal    | title = Indazole- and Indole-5-carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency | url = | journal = Journal of Medicinal Chemistry | volume = 57 | issue = 15  | pages = 6679–6703 | date = June 23, 2014 | doi = 10.1021/jm500729a | pmid=24955776}}</ref>
 
===Irreversible (covalent) ===
* [[Selegiline]] (Eldepryl, Zelapar, [[Emsam]])
* [[Rasagiline]] (Azilect)
{{Clear}}
 
== See also ==
* [[Monoamine oxidase A]]
 
== References ==
{{reflist|30em}}

Revision as of 00:25, 27 October 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Monoamine oxidase B, also known as MAOB, is an enzyme that in humans is encoded by the MAOB gene.

The protein encoded by this gene belongs to the flavin monoamine oxidase family. It is an enzyme located in the outer mitochondrial membrane. It catalyzes the oxidative deamination of biogenic and xenobiotic amines and plays an important role in the catabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. This protein preferentially degrades benzylamine and phenylethylamine.[1] Like MAOA, it also degrades dopamine.

Structure

Monoamine oxidase B has a hydrophobic bipartite elongated cavity that (for the "open" conformation) occupies a combined volume close to 700 Å3. hMAO-A has a single cavity that exhibits a rounder shape and is larger in volume than the "substrate cavity" of hMAO-B.[2]

The first cavity of hMAO-B has been termed the entrance cavity (290 Å3), the second substrate cavity or active site cavity (~390 Å3) – between both an isoleucine199 side-chain serves as a gate. Depending on the substrate or bound inhibitor, it can exist in either an open or a closed form, which has been shown to be important in defining the inhibitor specificity of hMAO B. At the end of the substrate cavity is the FAD coenzyme with sites for favorable amine binding about the flavin involving two nearly parallel tyrosyl (398 and 435) residues that form what has been termed an aromatic cage.[2]

Differences between MAOA and MAOB

MAO-A is involved in the metabolism of tyramine; inhibition, in particular irreversible inhibition of MAO-A can result in a dangerous pressor effect when foods high in tyramine are consumed such as cheeses (informally known as the "cheese effect"). MAO-A is involved in the metabolism of serotonin, noradrenaline and dopamine whereas MAO-B metabolises the dopamine neurotransmitter.[3] MAO-B is an enzyme on the outer mitochondrial membrane and catalyzes the oxidation of arylalkylamine neurotransmitters[4]

Monoamine oxidase A (MAOA) generally metabolizes tyramine, norepinephrine (NE), serotonin (5-HT), and dopamine (DA) (and other less clinically relevant chemicals). In contrast, Monoamine oxidase B (MAOB) mainly metabolizes dopamine (DA) (and other less clinically relevant chemicals). The differences between the substrate selectivity of the two enzymes are utilized clinically when treating specific disorders: Monoamine oxidase A inhibitors have been typically used in the treatment of depression, and monoamine oxidase B inhibitors are typically used in the treatment of Parkinson's disease.[5][6] Nonspecific (i.e. MAOA/B combined) inhibitors can pose problems when taken concomitantly with tyramine-containing foods such as cheese, because the drug's inhibition of MAOA causes a dangerous elevation of serum tyramine levels, which can lead to hypertensive symptoms. Selective MAOB inhibitors bypass this problem by preferentially inhibiting MAOB, which mostly metabolizes DA. If MAOB is inhibited, then more DA is available for proper neuronal function, especially in Parkinson's Disease.

Roles in disease and aging

Alzheimer's disease and Parkinson's disease are both associated with elevated levels of MAO-B in the brain.[7][8] The normal activity of MAO-B creates reactive oxygen species, which directly damage cells.[9] MAO-B levels have been found to increase with age, suggesting a role in natural age related cognitive decline and the increased likelihood of developing neurological diseases later in life.[10] More active polymorphisms of the MAOB gene have been linked to negative emotionality, and suspected as an underlying factor in depression.[11] Activity of MAO-B has also been shown to play a role in stress-induced cardiac damage.[12][13]

Animal models

Transgenic mice that are unable to produce MAO-B are shown to be resistant to a mouse model of Parkinson's disease.[14][15][16] They also demonstrate increased responsiveness to stress (as with MAO-A knockout mice)[17] and increased β-PEA.[15][17] In addition, they exhibit behavioral disinhibition and reduced anxiety-like behaviors.[18]

Inhibition of MAO-B in rats has been shown to prevent many age-related biological changes such as optic nerve degeneration, and extend average lifespan by up to 39%.[19][20]

Effects of deficiency in humans

While people lacking the gene for MAO-A display mental retardation and behavioral abnormalities, people lacking the gene for MAO-B display no abnormalities except elevated phenethylamine levels in urine, raising the question of whether MAO-B is actually a necessary enzyme. Newer research indicates the importance of phenethylamine and other trace amines, which are now known to regulate catecholamine and serotonin neurotransmission through the same receptor as amphetamine, TAAR1.[21][22]

The prophylactic use of MAO-B inhibitors to slow natural human aging in otherwise healthy individuals has been proposed, but remains a highly controversial topic.[23][24]

Selective inhibitors

Error creating thumbnail: File missing
Geiparvarin
File:(+)-Catechin.png
(+)-Catechin
File:MAO-B inhibitors.png
Structural formulae of high-affinity reversible MAO inhibitors selective for type B

Species-dependent divergences may hamper the extrapolation of inhibitor potencies.[25]

Reversible

Natural

Synthetic

Irreversible (covalent)

See also

References

  1. "Entrez Gene: MAOB monoamine oxidase B".
  2. 2.0 2.1 Edmondson DE, Binda C, Mattevi A (August 2007). "Structural insights into the mechanism of amine oxidation by monoamine oxidases A and B". Arch. Biochem. Biophys. 464 (2): 269–76. doi:10.1016/j.abb.2007.05.006. PMC 1993809. PMID 17573034.
  3. Youdim MB, Weinstock M (January 2004). "Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation". Neurotoxicology. 25 (1–2): 243–50. doi:10.1016/S0161-813X(03)00103-7. PMID 14697899.
  4. Binda C, Hubálek F, Li M, Herzig Y, Sterling J, Edmondson DE, Mattevi A (March 2004). "Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class". J. Med. Chem. 47 (7): 1767–74. doi:10.1021/jm031087c. PMID 15027868.
  5. Nolen WA, Hoencamp E, Bouvy PF, Haffmans PM (1993). "Reversible monoamine oxidase-A inhibitors in resistant major depression". Clin Neuropharmacol. 16 (Suppl 2): S69–76. PMID 8313400.
  6. Riederer P, Laux G (March 2011). "MAO-inhibitors in Parkinson's Disease". Exp Neurobiol. 20 (1): 1–17. doi:10.5607/en.2011.20.1.1. PMC 3213739. PMID 22110357.
  7. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Löffler J, Richards JG (September 1994). "Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography". Neuroscience. 62 (1): 15–30. doi:10.1016/0306-4522(94)90311-5. PMID 7816197.
  8. Mallajosyula JK, Chinta SJ, Rajagopalan S, Nicholls DG, Andersen JK (October 2009). "Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson's disease". Neurotox Res. 16 (3): 186–93. doi:10.1007/s12640-009-9032-2. PMC 2727365. PMID 19526285.
  9. Nagatsu T, Sawada M (2006). "Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells". J. Neural Transm. Suppl. Journal of Neural Transmission. Supplementa. 71 (71): 53–65. doi:10.1007/978-3-211-33328-0_7. ISBN 978-3-211-33327-3. PMID 17447416.
  10. Kumar MJ, Andersen JK (August 2004). "Perspectives on MAO-B in aging and neurological disease: where do we go from here?". Mol. Neurobiol. 30 (1): 77–89. doi:10.1385/MN:30:1:077. PMID 15247489.
  11. Dlugos AM, Palmer AA, de Wit H (October 2009). "Negative emotionality: monoamine oxidase B gene variants modulate personality traits in healthy humans". J Neural Transm. 116 (10): 1323–34. doi:10.1007/s00702-009-0281-2. PMC 3653168. PMID 19657584.
  12. Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (July 2011). "Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury". Biochim. Biophys. Acta. 1813 (7): 1323–32. doi:10.1016/j.bbamcr.2010.09.010. PMC 3030628. PMID 20869994.
  13. Kaludercic N, Carpi A, Nagayama T, Sivakumaran V, Zhu G, Lai EW, Bedja D, De Mario A, Chen K, Gabrielson KL, Lindsey ML, Pacak K, Takimoto E, Shih JC, Kass DA, Di Lisa F, Paolocci N (January 2014). "Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts". Antioxid. Redox Signal. 20 (2): 267–80. doi:10.1089/ars.2012.4616. PMC 3887464. PMID 23581564.
  14. Shih JC, Chen K (1999). "MAO-A and -B gene knock-out mice exhibit distinctly different behavior". Neurobiology (Bp). 7 (2): 235–46. PMID 10591056.
  15. 15.0 15.1 Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD, Karoum F, Gal J, Shih JC (October 1997). "Increased stress response and beta-phenylethylamine in MAOB-deficient mice". Nature Genetics. 17 (2): 206–10. doi:10.1038/ng1097-206. PMID 9326944.
  16. Shih JC, Chen K, Ridd MJ (1999). "Monoamine oxidase: from genes to behavior". Annual Review of Neuroscience. 22: 197–217. doi:10.1146/annurev.neuro.22.1.197. PMC 2844879. PMID 10202537.
  17. 17.0 17.1 Shih JC (January 2004). "Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B.". Neurotoxicology. 25 (1–2): 21–30. doi:10.1016/s0161-813x(03)00112-8. PMID 14697877.
  18. Bortolato M, Godar SC, Davarian S, Chen K, Shih JC (December 2009). "Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice". Neuropsychopharmacology. 34 (13): 2746–57. doi:10.1038/npp.2009.118. PMC 2783894. PMID 19710633.
  19. Nebbioso M, Pascarella A, Cavallotti C, Pescosolido N (December 2012). "Monoamine oxidase enzymes and oxidative stress in the rat optic nerve: age-related changes". Int J Exp Pathol. 93 (6): 401–5. doi:10.1111/j.1365-2613.2012.00832.x. PMC 3521895. PMID 23082958.
  20. Kitani K, Kanai S, Sato Y, Ohta M, Ivy GO, Carrillo MC (1993). "Chronic treatment of (-)deprenyl prolongs the life span of male Fischer 344 rats. Further evidence". Life Sci. 52 (3): 281–8. doi:10.1016/0024-3205(93)90219-S. PMID 8423709.
  21. Lenders JW, Eisenhofer G, Abeling NG, Berger W, Murphy DL, Konings CH, Wagemakers LM, Kopin IJ, Karoum F, van Gennip AH, Brunner HG (February 1996). "Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes". J. Clin. Invest. 97 (4): 1010–9. doi:10.1172/JCI118492. PMC 507147. PMID 8613523.
  22. Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". J. Neurochem. 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468.
  23. Miklya I (December 2009). "[Slowing the age-induced decline of brain function with prophylactic use of (−)-deprenyl (Selegiline, Jumex). Current international view and conclusions 25 years after the Knoll's proposal]". Neuropsychopharmacol Hung (in Hungarian). 11 (4): 217–25. PMID 20150659.
  24. Ukraintseva SV, Arbeev KG, Michalsky AI, Yashin AI (June 2004). "Antiaging treatments have been legally prescribed for approximately thirty years". Ann. N. Y. Acad. Sci. 1019: 64–9. doi:10.1196/annals.1297.014. PMID 15246996.
  25. 25.0 25.1 25.2 Novaroli L, Daina A, Favre E, Bravo J, Carotti A, Leonetti F, Catto M, Carrupt PA, Reist M (October 2006). "Impact of species-dependent differences on screening, design, and development of MAO B inhibitors". J. Med. Chem. 49 (21): 6264–72. doi:10.1021/jm060441e. PMID 17034132.
  26. Carotti A, Carrieri A, Chimichi S, Boccalini M, Cosimelli B, Gnerre C, Carotti A, Carrupt PA, Testa B (December 2002). "Natural and synthetic geiparvarins are strong and selective MAO-B inhibitors. Synthesis and SAR studies". Bioorg. Med. Chem. Lett. 12 (24): 3551–5. doi:10.1016/S0960-894X(02)00798-9. PMID 12443774.
  27. Uebelhack R, Franke L, Schewe HJ (September 1998). "Inhibition of platelet MAO-B by kava pyrone-enriched extract from Piper methysticum Forster (kava-kava)". Pharmacopsychiatry. 31 (5): 187–92. doi:10.1055/s-2007-979325. PMID 9832350.
  28. Dhingra, Dinesh; Kumar, Vaibhav (2008-08-01). "Evidences for the involvement of monoaminergic and GABAergic systems in antidepressant-like activity of garlic extract in mice". Indian Journal of Pharmacology. 40 (4): 175–179. doi:10.4103/0253-7613.43165. ISSN 0253-7613. PMC 2792615. PMID 20040952.
  29. Leonetti F, Capaldi C, Pisani L, Nicolotti O, Muncipinto G, Stefanachi A, Cellamare S, Caccia C, Carotti A (October 2007). "Solid-phase synthesis and insights into structure-activity relationships of safinamide analogues as potent and selective inhibitors of type B monoamine oxidase". Journal of Medicinal Chemistry. 50 (20): 4909–16. doi:10.1021/jm070725e. PMID 17824599.
  30. compound #2d, Frédérick R, Dumont W, Ooms F, Aschenbach L, Van der Schyf CJ, Castagnoli N, Wouters J, Krief A (June 2006). "Synthesis, structural reassignment, and biological activity of type B MAO inhibitors based on the 5H-indeno[1,2-c]pyridazin-5-one core". J. Med. Chem. 49 (12): 3743–7. doi:10.1021/jm051091j. PMID 16759116.
  31. Carotti A, Catto M, Leonetti F, Campagna F, Soto-Otero R, Méndez-Alvarez E, Thull U, Testa B, Altomare C (November 2007). "Synthesis and monoamine oxidase inhibitory activity of new pyridazine-, pyrimidine- and 1,2,4-triazine-containing tricyclic derivatives". Journal of Medicinal Chemistry. 50 (22): 5364–71. doi:10.1021/jm070728r. PMID 17910428.
  32. Chimenti F, Fioravanti R, Bolasco A, Chimenti P, Secci D, Rossi F, Yáñez M, Orallo F, Ortuso F, Alcaro S (May 2009). "Chalcones: a valid scaffold for monoamine oxidases inhibitors". J. Med. Chem. 52 (9): 2818–24. doi:10.1021/jm801590u. PMID 19378991.
  33. compound #21, Silvestri R, La Regina G, De Martino G, Artico M, Befani O, Palumbo M, Agostinelli E, Turini P (March 2003). "Simple, potent, and selective pyrrole inhibitors of monoamine oxidase types A and B". J. Med. Chem. 46 (6): 917–20. doi:10.1021/jm0256124. PMID 12620068.
  34. compound # (R)-8b, Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Yáñez M, Orallo F, Sanna ML, Gallinella B, Cirilli R (September 2010). "Synthesis, stereochemical separation, and biological evaluation of selective inhibitors of human MAO-B: 1-(4-arylthiazol-2-yl)-2-(3-methylcyclohexylidene)hydrazines". J. Med. Chem. 53 (17): 6516–20. doi:10.1021/jm100120s. PMID 20715818.
  35. compound #18, Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Cardia MC, Distinto S (February 2007). "Selective inhibitory activity against MAO and molecular modeling studies of 2-thiazolylhydrazone derivatives". J. Med. Chem. 50 (4): 707–12. doi:10.1021/jm060869d. PMID 17253676.
  36. compound #3g, Chimenti F, Fioravanti R, Bolasco A, Manna F, Chimenti P, Secci D, Befani O, Turini P, Ortuso F, Alcaro S (February 2007). "Monoamine oxidase isoform-dependent tautomeric influence in the recognition of 3,5-diaryl pyrazole inhibitors". J. Med. Chem. 50 (3): 425–8. doi:10.1021/jm060868l. PMID 17266193.
  37. compound #(S)-1, Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Cirilli R, La Torre F, Cardia MC, Distinto S (November 2005). "Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)- pyrazole derivatives". J. Med. Chem. 48 (23): 7113–22. doi:10.1021/jm040903t. PMID 16279769.
  38. Mishra N, Sasmal D (April 2011). "Development of selective and reversible pyrazoline based MAO-B inhibitors: virtual screening, synthesis and biological evaluation". Bioorg. Med. Chem. Lett. 21 (7): 1969–73. doi:10.1016/j.bmcl.2011.02.030. PMID 21377879.
  39. compound #41, Catto M, Nicolotti O, Leonetti F, Carotti A, Favia AD, Soto-Otero R, Méndez-Alvarez E, Carotti A (2006). "Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches". Journal of Medicinal Chemistry. 49 (16): 4912–25. doi:10.1021/jm060183l. PMID 16884303.
  40. compound #2, Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L, Viña D (July 2011). "MAO inhibitory activity modulation: 3-Phenylcoumarins versus 3-benzoylcoumarins". Bioorg. Med. Chem. Lett. 21 (14): 4224–7. doi:10.1016/j.bmcl.2011.05.074. PMID 21684743.
  41. Matos MJ, Viña D, Janeiro P, Borges F, Santana L, Uriarte E (September 2010). "New halogenated 3-phenylcoumarins as potent and selective MAO-B inhibitors". Bioorg. Med. Chem. Lett. 20 (17): 5157–60. doi:10.1016/j.bmcl.2010.07.013. PMID 20659799.
  42. Matos MJ, Viña D, Picciau C, Orallo F, Santana L, Uriarte E (September 2009). "Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors". Bioorg. Med. Chem. Lett. 19 (17): 5053–5. doi:10.1016/j.bmcl.2009.07.039. PMID 19628387.
  43. Matos MJ, Viña D, Quezada E, Picciau C, Delogu G, Orallo F, Santana L, Uriarte E (June 2009). "A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors". Bioorg. Med. Chem. Lett. 19 (12): 3268–70. doi:10.1016/j.bmcl.2009.04.085. PMID 19423346.
  44. compound #9, #12, Gaspar A, Reis J, Fonseca A, Milhazes N, Viña D, Uriarte E, Borges F (January 2011). "Chromone 3-phenylcarboxamides as potent and selective MAO-B inhibitors". Bioorg. Med. Chem. Lett. 21 (2): 707–9. doi:10.1016/j.bmcl.2010.11.128. PMID 21194943.
  45. compound #9i, Manley-King CI, Bergh JJ, Petzer JP (January 2011). "Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues". Bioorg. Med. Chem. 19 (1): 261–74. doi:10.1016/j.bmc.2010.11.028. PMID 21134756.
  46. compound #5c, Manley-King CI, Bergh JJ, Petzer JP (August 2011). "Inhibition of monoamine oxidase by C5-substituted phthalimide analogues". Bioorg. Med. Chem. 19 (16): 4829–40. doi:10.1016/j.bmc.2011.06.070. PMID 21778064.
  47. Strydom B, Bergh JJ, Petzer JP (August 2011). "8-Aryl- and alkyloxycaffeine analogues as inhibitors of monoamine oxidase". Eur J Med Chem. 46 (8): 3474–85. doi:10.1016/j.ejmech.2011.05.014. PMID 21621312.
  48. Strydom B, Malan SF, Castagnoli N, Bergh JJ, Petzer JP (February 2010). "Inhibition of monoamine oxidase by 8-benzyloxycaffeine analogues". Bioorg. Med. Chem. 18 (3): 1018–28. doi:10.1016/j.bmc.2009.12.064. PMID 20093036.
  49. Vlok N, Malan SF, Castagnoli N, Bergh JJ, Petzer JP (May 2006). "Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC)". Bioorg. Med. Chem. 14 (10): 3512–21. doi:10.1016/j.bmc.2006.01.011. PMID 16442801.
  50. Pretorius J, Malan SF, Castagnoli N, Bergh JJ, Petzer JP (September 2008). "Dual inhibition of monoamine oxidase B and antagonism of the adenosine A(2A) receptor by (E,E)-8-(4-phenylbutadien-1-yl)caffeine analogues". Bioorganic & Medicinal Chemistry. 16 (18): 8676–84. doi:10.1016/j.bmc.2008.07.088. PMID 18723354.
  51. Tzvetkov; et al. (June 23, 2014). "Indazole- and Indole-5-carboxamides: Selective and Reversible Monoamine Oxidase B Inhibitors with Subnanomolar Potency". Journal of Medicinal Chemistry. 57 (15): 6679–6703. doi:10.1021/jm500729a. PMID 24955776.