Hypertrophic cardiomyopathy stress testing: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 4: Line 4:


==Overview==
==Overview==
==Electrophysiologic study==
The prognostic value of electrophysiologic testing in the absence of spontaneous, sustained ventricular tachycardia is limited, and in fact, the study itself may be dangerous.  Sustained ventricular tachyarrhythmias, predominantly rapid polymorphic ventricular tachycardia, have been induced in 27 to 43 percent of patients with HCM at electrophysiologic study, but their prognostic significance is controversial.  The predictive value of asymptomatic nonsustained ventricular tachycardia is also limited.  Paced electrogram fractionation in hypertrophic cardiomyopathy may helpful in determining which patients are at risk for [[ventricular fibrillation]].
The absence of inducible, sustained monomorphic ventricular tachyarrhythmias, absence of nonsustained ventricular tachycardia on ambulatory ECG, and no history of  ''impaired consciousness'' (i.e., cardiac arrest or syncope) identified a subset (22 percent) of patients with HCM with a low (<1 percent) risk for sudden cardiac death.


==Stress Test==
==Stress Test==

Revision as of 03:05, 6 September 2013

Hypertrophic Cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypertrophic Cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypertrophic cardiomyopathy stress testing On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypertrophic cardiomyopathy stress testing

CDC on Hypertrophic cardiomyopathy stress testing

Hypertrophic cardiomyopathy stress testing in the news

Blogs on Hypertrophic cardiomyopathy stress testing

Directions to Hospitals Treating Hypertrophic cardiomyopathy

Risk calculators and risk factors for Hypertrophic cardiomyopathy stress testing

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Stress Test

2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy (DO NOT EDIT)[1]

Stress Testing (DO NOT EDIT)[1]

Class IIa
"1. Treadmill exercise testing is reasonable to determine functional capacity and response to therapy in patients with HOCM. (Level of Evidence: C) "
"2. Treadmill testing with monitoring of an ECG and blood pressure is reasonable for SCD risk stratification in patients with HOCM.[2][3][4] (Level of Evidence: B) "
"3. In patients with HOCM who do not have a resting peak instantaneous gradient of greater than or equal to 50 mm Hg, exercise echocardiography is reasonable for the detection and quantification of exercise-induced dynamic LVOT obstruction.[5][6][2][3] (Level of Evidence: B) "

References

  1. 1.0 1.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): e212–60. doi:10.1016/j.jacc.2011.06.011. PMID 22075469. Retrieved 2011-12-19. Unknown parameter |month= ignored (help)
  2. 2.0 2.1 Sadoul N, Prasad K, Elliott PM, Bannerjee S, Frenneaux MP, McKenna WJ (1997). "Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy". Circulation. 96 (9): 2987–91. PMID 9386166. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  3. 3.0 3.1 Olivotto I, Maron BJ, Montereggi A, Mazzuoli F, Dolara A, Cecchi F (1999). "Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy". Journal of the American College of Cardiology. 33 (7): 2044–51. PMID 10362212. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  4. Ciampi Q, Betocchi S, Lombardi R, Manganelli F, Storto G, Losi MA, Pezzella E, Finizio F, Cuocolo A, Chiariello M (2002). "Hemodynamic determinants of exercise-induced abnormal blood pressure response in hypertrophic cardiomyopathy". Journal of the American College of Cardiology. 40 (2): 278–84. PMID 12106932. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  5. Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, Nistri S, Cecchi F, Udelson JE, Maron BJ (2006). "Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction". Circulation. 114 (21): 2232–9. doi:10.1161/CIRCULATIONAHA.106.644682. PMID 17088454. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  6. Frenneaux MP, Counihan PJ, Caforio AL, Chikamori T, McKenna WJ (1990). "Abnormal blood pressure response during exercise in hypertrophic cardiomyopathy". Circulation. 82 (6): 1995–2002. PMID 2242524. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)