Hepatic encephalopathy pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


==Overview==
==Overview==
The exact pathogenesis of [disease name] is not fully understood.


==Pathophysiology==
OR
 
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
 
OR
 
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
 
OR
 
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
 
OR
 
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
 
OR
 
The progression to [disease name] usually involves the [molecular pathway].
 
OR
 
The pathophysiology of [disease/malignancy] depends on the histological subtype.
 
== Pathophysiology ==
 
=== Pathogenesis ===
Due to the presence of scarring within the [[liver]], [[cirrhosis]] leads to obstruction of the passage of blood through the [[liver]] causing [[portal hypertension]]. This means it is difficult for blood from the [[intestine]]s to go through the liver to get back to the [[heart]]. Portal-systemic [[anastomosis|anastamoses]] ("shunts") develop, and portal blood (from the intestinal veins) will bypass the liver and return to the heart via another route without undergoing first-pass detoxification by the liver.
Due to the presence of scarring within the [[liver]], [[cirrhosis]] leads to obstruction of the passage of blood through the [[liver]] causing [[portal hypertension]]. This means it is difficult for blood from the [[intestine]]s to go through the liver to get back to the [[heart]]. Portal-systemic [[anastomosis|anastamoses]] ("shunts") develop, and portal blood (from the intestinal veins) will bypass the liver and return to the heart via another route without undergoing first-pass detoxification by the liver.


Line 13: Line 40:


Ammonia can cross the [[blood-brain barrier]], where it causes the support cells of the brain ([[astrocyte]]s) to swell. The swelling of the brain tissue increases [[intracranial pressure]], and can lead to [[coma]] or [[death]] via [[Brain herniation|herniation]] of the brainstem.
Ammonia can cross the [[blood-brain barrier]], where it causes the support cells of the brain ([[astrocyte]]s) to swell. The swelling of the brain tissue increases [[intracranial pressure]], and can lead to [[coma]] or [[death]] via [[Brain herniation|herniation]] of the brainstem.
== Genetics ==
There is no established relation between hepatic encephalopathy and genetic inheritance.
== Associated Conditions ==
== Gross Pathology ==
* On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
== Microscopic Pathology ==
* On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].


==References==
==References==

Revision as of 18:06, 7 December 2017

Hepatic encephalopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hepatic Encephalopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hepatic encephalopathy pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hepatic encephalopathy pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hepatic encephalopathy pathophysiology

CDC on Hepatic encephalopathy pathophysiology

Hepatic encephalopathy pathophysiology in the news

Blogs on Hepatic encephalopathy pathophysiology

Directions to Hospitals Treating Hepatic encephalopathy

Risk calculators and risk factors for Hepatic encephalopathy pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Mohamadmostafa Jahansouz M.D.[2]

Overview

The exact pathogenesis of [disease name] is not fully understood.

OR

It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].

OR

[Pathogen name] is usually transmitted via the [transmission route] route to the human host.

OR

Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.

OR

[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].

OR

The progression to [disease name] usually involves the [molecular pathway].

OR

The pathophysiology of [disease/malignancy] depends on the histological subtype.

Pathophysiology

Pathogenesis

Due to the presence of scarring within the liver, cirrhosis leads to obstruction of the passage of blood through the liver causing portal hypertension. This means it is difficult for blood from the intestines to go through the liver to get back to the heart. Portal-systemic anastamoses ("shunts") develop, and portal blood (from the intestinal veins) will bypass the liver and return to the heart via another route without undergoing first-pass detoxification by the liver.

Furthermore, in cirrhosis and other forms of liver disease, the damaged liver will not be functioning as well as it should be, so even blood that does travel through the liver may not be as detoxified as it otherwise would be. In fact, if the degree of liver damage and malfunction is severe, then, even in the absence of portal hypertension and the consequent bypassing of the liver by blood coming in from the intestines, hepatic encephalopathy will still occur. Such may well be the case, for example, following severe injury due to acetaminophen poisoning or acute viral infection (e.g. hepatitis A).

The toxic substances which accumulate in the setting of liver failure and affect the brain are still not well understood. They have been thought to include ammonia (NH3) and mercaptans. Ammonia is normally converted to urea by the liver and, as with mercaptans, is produced by the bacterial breakdown of protein in the intestines.

Ammonia can cross the blood-brain barrier, where it causes the support cells of the brain (astrocytes) to swell. The swelling of the brain tissue increases intracranial pressure, and can lead to coma or death via herniation of the brainstem.

Genetics

There is no established relation between hepatic encephalopathy and genetic inheritance.

Associated Conditions

Gross Pathology

  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

Template:WH Template:WS