Deep vein thrombosis assessment of clinical probability and risk scores: Difference between revisions

Jump to navigation Jump to search
(No difference)

Revision as of 00:54, 29 May 2014

Editor(s)-In-Chief: The APEX Trial Investigators, C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2] ; Kashish Goel, M.D.; Assistant Editor(s)-In-Chief: Justine Cadet

Deep Vein Thrombosis Microchapters

Home

Patient Information

Overview

Classification

Pathophysiology

Causes

Differentiating Deep vein thrombosis from other Diseases

Epidemiology and Demographics

Risk Factors

Triggers

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Approach

Assessment of Clinical Probability and Risk Scores

Assessment of Probability of Subsequent VTE and Risk Scores

History and Symptoms

Physical Examination

Laboratory Findings

Ultrasound

Venography

CT

MRI

Other Imaging Findings

Treatment

Treatment Approach

Medical Therapy

IVC Filter

Invasive Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Special Scenario

Upper extremity DVT

Recurrence

Pregnancy

Trials

Landmark Trials

Case Studies

Case #1

Deep vein thrombosis assessment of clinical probability and risk scores On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Deep vein thrombosis assessment of clinical probability and risk scores

CDC on Deep vein thrombosis assessment of clinical probability and risk scores

Deep vein thrombosis assessment of clinical probability and risk scores in the news

Blogs on Deep vein thrombosis assessment of clinical probability and risk scores

Directions to Hospitals Treating Deep vein thrombosis

Risk calculators and risk factors for Deep vein thrombosis assessment of clinical probability and risk scores

Overview

In a patient with suspected DVT, establishing pre-test probability helps in early risk stratification and appropriate use of laboratory tests and imaging modalities. Many pretest probability scoring systems are proposed for use in primary care patients, like the Wells score, Hamilton score , and AMUSE score. [1][2] When combined with pretest probability, ultrasonography and D-dimer tests are most useful in a diagnosis for DVT.

Pretest Probability

Wells Score

The Wells score is the most widely used tool to assess pre-test probability. It includes 10 clinical questions, with the score ranging from -2 to 9. Pretest probability guides the interpretation of test results. It includes risk factors and examination findings.

Wells score calculator for DVT

Variable Wells Score[3][4]
Active cancer (treatment within last 6 months or palliative) 1
Calf swelling >3 cm compared to other calf (measured 10 cm below tibial tuberosity) 1
Collateral superficial veins (non-varicose) 1
Pitting edema (confined to symptomatic leg) 1
Swelling of entire leg 1
Localized pain along distribution of deep venous system 1
Paralysis, paresis, or recent cast immobilization of lower extremities 1
Recently bedridden > 3 days, or major surgery requiring regional or general anesthetic in past 12 weeks 1
Previously documented DVT 1
Alternative diagnosis at least as likely - 2

Interpretation

  • High probability: ≥ 3 (Prevalence of DVT - 53%)
  • Moderate probability: 1-2 (Prevalence of DVT - 17%)
  • Low probability: ≤ 0 (Prevalence of DVT - 5%)

A modified scoring system stratifies the patients as likely (≥ 2, 28% prevalence) or unlikely (< 2, 6% prevalence) based on the score of 2.

Limitations of Wells score

  • The accuracy of the Wells rule, though useful in secondary and tertiary care centers, has not been properly validated for use in primary care patients with the suspicion of DVT.[5]
  • The performance of the Wells score was decreased when evaluating elderly patients, patients with a prior DVT, or patients having other comorbidities. These results may be equivalent to what is found in a primary care setting.[6][7] Also, it should be highlighted that Wells criteria is an additional tool to diagnosis rather than being a stand-alone test.

References

  1. Subramaniam RM, Chou T, Heath R, Allen R (2006). "Importance of pretest probability score and D-dimer assay before sonography for lower limb deep venous thrombosis". AJR Am J Roentgenol. 186 (1): 206–12. doi:10.2214/AJR.04.1398. PMID 16357403. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  2. van der Velde EF, Toll DB, Ten Cate-Hoek AJ, Oudega R, Stoffers HE, Bossuyt PM, Büller HR, Prins MH, Hoes AW, Moons KG, van Weert HC (2011). "Comparing the diagnostic performance of 2 clinical decision rules to rule out deep vein thrombosis in primary care patients". Ann Fam Med. 9 (1): 31–6. doi:10.1370/afm.1198. PMC 3022042. PMID 21242558. Retrieved 2011-12-22.
  3. Wells PS, Anderson DR, Bormanis J; et al. (1997). "Value of assessment of pretest probability of deep-vein thrombosis in clinical management". Lancet. 350 (9094): 1795–8. doi:10.1016/S0140-6736(97)08140-3. PMID 9428249.
  4. Wells PS, Anderson DR, Rodger M; et al. (2003). "Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis". N. Engl. J. Med. 349 (13): 1227–35. doi:10.1056/NEJMoa023153. PMID 14507948. Unknown parameter |month= ignored (help)
  5. Oudega R, Hoes AW, Moons KG (2005). "The Wells rule does not adequately rule out deep venous thrombosis in primary care patients". Ann. Intern. Med. 143 (2): 100–7. PMID 16027451. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  6. Goodacre S, Sutton AJ, Sampson FC (2005). "Meta-analysis: The value of clinical assessment in the diagnosis of deep venous thrombosis". Ann. Intern. Med. 143 (2): 129–39. PMID 16027455. Retrieved 2011-12-22. Unknown parameter |month= ignored (help)
  7. Qaseem A, Snow V, Barry P, Hornbake ER, Rodnick JE, Tobolic T, Ireland B, Segal J, Bass E, Weiss KB, Green L, Owens DK (2007). "Current diagnosis of venous thromboembolism in primary care: a clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians". Ann Fam Med. 5 (1): 57–62. doi:10.1370/afm.667. PMC 1783928. PMID 17261865. Retrieved 2011-12-22.