Cardiac allograft vasculopathy pathophysiology

Revision as of 15:40, 27 July 2014 by Aarti Narayan (talk | contribs)
Jump to navigation Jump to search

Cardiac allograft vasculopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Differentiating Cardiac allograft vasculopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Coronary Angiography

Intravascular Ultrasound

Optical Coherence Tomography

CT

MRI

Echocardiography

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Cardiac allograft vasculopathy pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Cardiac allograft vasculopathy pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Cardiac allograft vasculopathy pathophysiology

CDC on Cardiac allograft vasculopathy pathophysiology

Cardiac allograft vasculopathy pathophysiology in the news

Blogs on Cardiac allograft vasculopathy pathophysiology

Directions to Hospitals Treating Cardiac allograft vasculopathy

Risk calculators and risk factors for Cardiac allograft vasculopathy pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

CAV is a fibro-proliferative disorder of the coronary arteries of cardiac allografts. It is characterized by longitudinal concentric intraluminal narrowing secondary to intimal proliferation in epicardial coronary arteries. There is also concentric medial hyperplasia in the myocardial microvasculature. In contrast, epicardial atherosclerotic process is non-circumferential, focal and localized to epicardial vessels.

Pathophysiology

Pathology

Serial intravascular ultrasounds have demonstrated that majority of the intraluminal narrowing occurs in the first year after transplant. In the initial stages, there is expansion of the external elastic lamina and subsequently constriction of this layer leads to intra-luminal narrowing. There may also be associated mural thrombi which may lead to acute myocardial infarction. Early clots are platelet rich which may later be replaced by organized thrombus rich in fibrin. Increased platelet activation with expression of surface membrane glycoproteins has been linked to acclerated progression of CAV.

Histologically, the immunological and non-immunological factors cause sub-endothelial inflammation resulting in migration of lymphocytes (T cells especially), proliferation of smooth muscle cells, formation of lipid laden foam cells and fibrosis. This further accelerates the process of endothelial dysfunction. The end result is progressive luminal compromise, reduced coronary blood flow and vasodilatory capacity leading to ischemia and chronic ventricular dysfunction.

Pathogenesis

The pathogenesis of CAV appears to multifactorial with immunological and non-immunological factors both contributing to the process. Predominant factors include donor specific HLA antibodies, cellular mediated injury, cytomegalovirus infection and hypercholesterolemia. Immunological insult is the most accepted theory owing to the fact that CAV develops in donor arteries only.

Acute phase reactants may be elevated and is thought to be a marker of progression of CAV.

1) HLA mismatch: Studies have reported a higher incidence of CAV in recipients with HLA mismatching. HLA-DR and HLA-A mismatches have been more strongly associated with occurrence of CAV.

References

Template:WH Template:WS