Adrenocortical carcinoma causes

Jump to navigation Jump to search

Adrenocortical carcinoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Adrenocortical carcinoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Staging

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

MRI

CT

Ultrasound

Other Imaging Studies

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Radiation Therapy

Primary prevention

Secondary prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Study

Case #1

Adrenocortical carcinoma causes On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Adrenocortical carcinoma causes

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Adrenocortical carcinoma causes

CDC on Adrenocortical carcinoma causes

Adrenocortical carcinoma causes in the news

Blogs on Adrenocortical carcinoma causes

Hospitals Treating Adrenocortical carcinoma

Risk calculators and risk factors for Adrenocortical carcinoma causes

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Raviteja Guddeti, M.B.B.S. [2] Ahmad Al Maradni, M.D. [3] Mohammed Abdelwahed M.D[4]

Overview

There are no established causes for adrenocortical carcinoma. The relatively increased incidence in childhood is mainly explained by germline TP53 mutations, which are the underlying genetic cause of ACC in more than 50% to 80% of children.

Causes

  • There are no established causes for adrenocortical carcinoma.
  • The relatively increased incidence in childhood is mainly explained by germline TP53 mutations, which are the underlying genetic cause of ACC in >50% to 80% of children.

Genetics

The genetic dissection of ACC has revealed genomic aberrations that contribute to neoplastic transformation of adrenocortical cells:

1. Clonality

2. Gene expression arrays

  • Expression levels of BUB1B, PINK1, and DLG7 are identified in ACC.[7]

3. MicroRNAs

  • MicroRNAs are RNAs that are important in the regulation of gene expression.
  • Numerous miRNAs have been identified in the regulation of various cellular processes such as proliferationapoptosis, and differentiation.[8]
  • Dysregulation of miRNAs, such as overexpression or deletion, plays an important role in diseases.
  • Mistargeting of the miRNAs, resulting in inhibition or activation of various oncogenestumor suppressors, and other factors important in tumor angiogenesis.[9]
  • The investigation identified 14 upregulated miRNAs and 9 downregulated miRNAs unique to ACC.[10]
  • Upregulated miRNAs in ACCs included miR-184, miR-210, and miR-503.
  • Downregulated miRNAs included miR-214, miR-375, and miR-511.
  • Levels of miR-184, miR-503, and miR-511 are able to distinguish benign from malignant adrenal tumors.[16]
  • MiR-483 was found to be significantly upregulated in pediatric ACCs.
  • MiR-99a and miR-100 are bioinformatically predicted to target the 3- untranslated regions of IGF1RRPTOR, and FRAP1 and were experimentally confirmed to target several components of the IGF-1 signaling pathway.[17]

4. Gene mutations

  • TP53 located on 17p13 is the most commonly mutated gene in ACC, present in at least one-third of ACCs.[19]
  • LOH in the gene encoding p16inkp14arfCDKN2A is observed in a subset of ACCs. The tumor suppressor function of this gene has been established in multiple cancers. LOH of 11q13 has been identified in 83% of samples.[20]
  • MEN1 somatic mutations are unusual in sporadic ACC.[21]
  • The canonical Wnt pathway, the catenin gene, and CTNNB1 have been identified as activating point mutations in over 25% of both ACAs and ACCs in children and adults.[22]

5. Chromosomal aberrations

  • ACCs showed complex chromosomal alterations. ACCs contained multiple chromosomal gains or losses with a mean of 10 events.
  • The newest study confirmed increased alterations in ACC (44%) compared with ACAs (10%).
  • In ACCs, the frequently observed chromosomal gains at 5, 7, 12, 16, 19, and 20 and losses at 13 and 22 were confirmed.

6. Epigenetic

Hereditary syndromes associated with adrenocortical carcinoma are:

Associated conditions Gene mutations Clinical picture
Lynch syndrome[11]
Neurofibromatosis type 1
MEN1[12]
  • MENIN
Carney complex
BWS[13]

References

  1. F. Beuschlein, M. Reincke, M. Karl, W. D. Travis, C. Jaursch-Hancke, S. Abdelhamid, G. P. Chrousos & B. Allolio (1994). "Clonal composition of human adrenocortical neoplasms". Cancer research. 54 (18): 4927–4932. PMID 7915195. Unknown parameter |month= ignored (help)
  2. C. Gicquel, M. Leblond-Francillard, X. Bertagna, A. Louvel, Y. Chapuis, J. P. Luton, F. Girard & Y. Le Bouc (1994). "Clonal analysis of human adrenocortical carcinomas and secreting adenomas". Clinical endocrinology. 40 (4): 465–477. PMID 7910530. Unknown parameter |month= ignored (help)
  3. J. B. Amberson, E. D. Jr Vaughan, G. F. Gray & G. J. Naus (1987). "Flow cytometric determination of nuclear DNA content in benign adrenal pheochromocytomas". Urology. 30 (2): 102–104. PMID 3617290. Unknown parameter |month= ignored (help)
  4. E. S. Cibas, L. J. Medeiros, D. S. Weinberg, A. B. Gelb & L. M. Weiss (1990). "Cellular DNA profiles of benign and malignant adrenocortical tumors". The American journal of surgical pathology. 14 (10): 948–955. PMID 2403197. Unknown parameter |month= ignored (help)
  5. Florence de Fraipont, Michelle El Atifi, Nadia Cherradi, Gwennaelle Le Moigne, Genevieve Defaye, Remi Houlgatte, Jerome Bertherat, Xavier Bertagna, Pierre-Francois Plouin, Eric Baudin, Francois Berger, Christine Gicquel, Olivier Chabre & Jean-Jacques Feige (2005). "Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy". The Journal of clinical endocrinology and metabolism. 90 (3): 1819–1829. doi:10.1210/jc.2004-1075. PMID 15613424. Unknown parameter |month= ignored (help)
  6. Thomas J. Giordano, Rork Kuick, Tobias Else, Paul G. Gauger, Michelle Vinco, Juliane Bauersfeld, Donita Sanders, Dafydd G. Thomas, Gerard Doherty & Gary Hammer (2009). "Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling". Clinical cancer research : an official journal of the American Association for Cancer Research. 15 (2): 668–676. doi:10.1158/1078-0432.CCR-08-1067. PMID 19147773. Unknown parameter |month= ignored (help)
  7. Aurelien de Reynies, Guillaume Assie, David S. Rickman, Frederique Tissier, Lionel Groussin, Fernande Rene-Corail, Bertrand Dousset, Xavier Bertagna, Eric Clauser & Jerome Bertherat (2009). "Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival". Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 27 (7): 1108–1115. doi:10.1200/JCO.2008.18.5678. PMID 19139432. Unknown parameter |month= ignored (help)
  8. Benjamin Czech & Gregory J. Hannon (2011). "Small RNA sorting: matchmaking for Argonautes". Nature reviews. Genetics. 12 (1): 19–31. doi:10.1038/nrg2916. PMID 21116305. Unknown parameter |month= ignored (help)
  9. Amaia Lujambio & Scott W. Lowe (2012). "The microcosmos of cancer". Nature. 482 (7385): 347–355. doi:10.1038/nature10888. PMID 22337054. Unknown parameter |month= ignored (help)
  10. Patsy Siok Hwa Soon, Lyndal J. Tacon, Anthony J. Gill, Christopher P. Bambach, Mark S. Sywak, Peter R. Campbell, Michael W. Yeh, Steven G. Wong, Roderick J. Clifton-Bligh, Bruce G. Robinson & Stan B. Sidhu (2009). "miR-195 and miR-483-5p Identified as Predictors of Poor Prognosis in Adrenocortical Cancer". Clinical cancer research : an official journal of the American Association for Cancer Research. 15 (24): 7684–7692. doi:10.1158/1078-0432.CCR-09-1587. PMID 19996210. Unknown parameter |month= ignored (help)
  11. Carethers JM, Stoffel EM (2015). "Lynch syndrome and Lynch syndrome mimics: The growing complex landscape of hereditary colon cancer". World J Gastroenterol. 21 (31): 9253–61. doi:10.3748/wjg.v21.i31.9253. PMC 4541378. PMID 26309352.
  12. B. Gatta-Cherifi, O. Chabre, A. Murat, P. Niccoli, C. Cardot-Bauters, V. Rohmer, J. Young, B. Delemer, H. Du Boullay, M. F. Verger, J. M. Kuhn, J. L. Sadoul, Ph Ruszniewski, A. Beckers, M. Monsaingeon, E. Baudin, P. Goudet & A. Tabarin (2012). "Adrenal involvement in MEN1. Analysis of 715 cases from the Groupe d'etude des Tumeurs Endocrines database". European journal of endocrinology. 166 (2): 269–279. doi:10.1530/EJE-11-0679. PMID 22084155. Unknown parameter |month= ignored (help)
  13. H. Segers, R. Kersseboom, M. Alders, R. Pieters, A. Wagner & M. M. van den Heuvel-Eibrink (2012). "Frequency of WT1 and 11p15 constitutional aberrations and phenotypic correlation in childhood Wilms tumour patients". European journal of cancer (Oxford, England : 1990). 48 (17): 3249–3256. doi:10.1016/j.ejca.2012.06.008. PMID 22796116. Unknown parameter |month= ignored (help)

Template:WikiDoc Sources