Pulmonary atresia: Difference between revisions
Line 26: | Line 26: | ||
==[[Pulmonary atresia pathophysiology|Pathophysiology]]== | ==[[Pulmonary atresia pathophysiology|Pathophysiology]]== | ||
The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. | The pulmonary valve is located on the right side of the heart between the right ventricle and the pulmonary artery. In a normally functioning heart, the opening to the pulmonary valve has three flaps that open and close like one-way doors. As these flaps open and close they force blood to flow forward into the pulmonary artery and backward into the right ventricle then forward again to the lungs where the blood becomes oxygenated. With the disease pulmonary atresia, the flap-like openings are completely covered by a layer of tissue, thus preventing the ability of blood flow to the lungs to become oxygenated. The body requires oxygenated blood for survival.[2] [1] Pulmonary atresia is not threatening to a developing fetus however, because the mother's placenta provides the needed oxygen since the baby's lungs are not yet functional. Once the baby is born its lungs must now provide the oxygen needed for survival, but with Pulmonary atresia, there is no opening on the pulmonary valve for blood to get to the lungs and become oxygenated. Due to this, the newborn baby is blue in color and pulmonary atresia can usually be diagnosed within hours or minutes after birth. | ||
Only an aorta can be seen originating from this pathology specimen. No pulmonary artery is present. | Only an aorta can be seen originating from this pathology specimen. No pulmonary artery is present. |
Revision as of 02:46, 19 June 2020
For patient information click here
Pulmonary atresia | ||
ICD-10 | Q25.5 | |
---|---|---|
ICD-9 | 747.3 | |
MedlinePlus | 001091 | |
MeSH | C14.240.670 |
Pulmonary atresia Microchapters |
Diagnosis |
---|
Treatment |
Pulmonary atresia On the Web |
American Roentgen Ray Society Images of Pulmonary atresia |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Muhammad Waqas
Overview
Pulmonary atresia is a congenital malformation of the pulmonary valve in which the outflow of the blood from the right side of the heart to the pulmonary artery is obstructed due to the valve orifice fails to develop. In most instances, the condition is almost always fatal without any intervention. Atresia means "no opening". In a normal healthy functioning heart, the valve consist of three flaps that opens on ventricular systole leading to emptying of blood from the right ventricle to the pulmonary artery and ultimately to the lungs for proper oxygenation.
This condition often is accompanied by a shunt/foreman ( 'Pulmonary atresia with Ventricular septum defect ) that transports the Oxygen-poor blood directly from the right ventricle to the left side of the heart through a shunt. This oxygen-poor blood is then pumped through the aorta to the rest of the body, making fingers, toes, and lips appear blue or cyanotic. [1] In other instance ( 'Pulmonary atresia with intact Ventricular ventricular septum' ), the blood can not flow from the right side to the left side via shunt and due to this reason, the size of the right ventricle is comparatively smaller than the former one. Early intervention is required in these cases and with the immediate intervention, the 5-year survival is 80 percent.
The type of surgery recommended depends on the size of the right ventricle and the pulmonary artery. If they are normal in size and the right ventricle is able to pump blood, open-heart surgery can be performed to make blood flow through the heart in a normal pattern. If the right ventricle is small and unable to act as a pump, doctors may perform an operation called the Fontan procedure. In this procedure, the right atrium is connected directly to the pulmonary artery. Many children with Pulmonary Atresia will go on to lead 'normal' lives.
Pathophysiology
The pulmonary valve is located on the right side of the heart between the right ventricle and the pulmonary artery. In a normally functioning heart, the opening to the pulmonary valve has three flaps that open and close like one-way doors. As these flaps open and close they force blood to flow forward into the pulmonary artery and backward into the right ventricle then forward again to the lungs where the blood becomes oxygenated. With the disease pulmonary atresia, the flap-like openings are completely covered by a layer of tissue, thus preventing the ability of blood flow to the lungs to become oxygenated. The body requires oxygenated blood for survival.[2] [1] Pulmonary atresia is not threatening to a developing fetus however, because the mother's placenta provides the needed oxygen since the baby's lungs are not yet functional. Once the baby is born its lungs must now provide the oxygen needed for survival, but with Pulmonary atresia, there is no opening on the pulmonary valve for blood to get to the lungs and become oxygenated. Due to this, the newborn baby is blue in color and pulmonary atresia can usually be diagnosed within hours or minutes after birth.
Only an aorta can be seen originating from this pathology specimen. No pulmonary artery is present.
Epidemiology and demographics
- While there is no difference in the incidence of Pulmonary atresia in male or female, it is found that pulmonary atresia with VSD ( PA-VSD ) is slightly more prevalent in males than in females. [1]
1) The prevalence of Pulmonary Atresia with VSD is estimated to be around 0.07 per 1000 live breath. and 2.5-3.4 % among all congenital heart diseases.[2]
2) The overall incidence of PA-IVSD is under estimated as most of the fetus are spontaneously aborted due to the underlying other congenital malformations or are diagnosed on routine antenatal ultrasound and results in elective termination.
- The reported incidence is 6-8 per 100,000 live births and 1-3% of all congenital heart disease. [3][4]
Classification
Natural history, Complications, and Prognosis
Causes
Differentiating Pulmonary atresia from other Disorders
As Pulmonic valva atresia presents with the signs and symptoms of right ventricular outflow obstruction, it can be confused with the disease with similar presentation. Diagnosis can be made on the basis of Echocardiographic findings. Conditions sharing the pulmonic outflow obstructions are;
1) Tetralogy of Fallot
2) Critical Pulmonary Stenosis
3) Tricuspid Atresia
Diagnosis
History and Symptoms | Physical Examination | Laboratory Tests | Electrocardiogram | Chest X Ray | MRI | CT | Echocardiography | Other Imaging Findings | Other Diagnostic Studies
Treatment
Medical: Medical Therapy
Surgical: Surgery
Primary Prevention | Secondary Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies