Rifampin isoniazid pyrazinamide clinical pharmacology

Jump to navigation Jump to search
Rifampin Isoniazid Pyrazinamide
RIFATER ® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Overdosage
Clinical Studies
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Chetan Lokhande, M.B.B.S [2]

Clinical Pharmacology

General

In a single-dose bioavailability study of five RIFATER tablets (Treatment A, n=23) versus RIFADIN 600 mg, isoniazid 250 mg, and pyrazinamide 1500 mg (Treatment B, n=24) administered concurrently in healthy subjects, there was no difference in extent of absorption, as measured by the area under the plasma concentration versus time curve (AUC), of all three components. However, the mean peak plasma concentration of rifampin was approximately 18% lower following the single-dose administration of RIFATER tablets as compared to RIFADIN administered in combination with pyrazinamide and isoniazid. Mean (±SD) pharmacokinetic parameters are summarized in the following table.

The effect of food on the pharmacokinetics of RIFATER tablets was not studied.

Rifampin

Rifampin is readily absorbed from the gastrointestinal tract. Peak serum levels in healthy adults and pediatric populations vary widely from individual to individual. Following a single 600 mg oral dose of rifampin in healthy adults, the peak serum level averages 7 mcg/mL but may vary from 4 to 32 mcg/mL. Absorption of rifampin is reduced by about 30% when the drug is ingested with food.

In healthy adults, the biological half-life of rifampin in serum averages 3.35 ± 0.66 hours after a 600 mg oral dose, with increases up to 5.08 ± 2.45 hours reported after a 900 mg dose. With repeated administration, the half-life decreases and reaches average values of approximately 2 to 3 hours. The half-life does not differ in patients with renal failure at doses not exceeding 600 mg daily and, consequently, no dosage adjustment is required. The half-life of rifampin at a dose of 720 mg daily has not been established in patients with renal failure. Following a single 900 mg oral dose of rifampin in patients with varying degrees of renal insufficiency, the mean half-life increased from 3.6 hours in healthy adults to 5.0, 7.3, and 11.0 hours in patients with glomerular filtration rates of 30–50 mL/min, less than 30 mL/min, and in anuric patients, respectively. Refer to the Warnings section for information regarding patients with hepatic insufficiency.

After absorption, rifampin is rapidly eliminated in the bile, and an enterohepatic circulation ensues. During this process, rifampin undergoes progressive deacetylation so that nearly all the drug in the bile is in this form in about 6 hours. This metabolite has antibacterial activity. Intestinal reabsorption is reduced by deacetylation, and elimination is facilitated. Up to 30% of a dose is excreted in the urine, with about half as unchanged drug.

Rifampin is widely distributed throughout the body. It is present in effective concentrations in many organs and body fluids, including cerebrospinal fluid. Rifampin is about 80% protein bound. Most of the unbound fraction is not ionized and therefore is diffused freely in tissues.

Pediatrics

In one study, pediatric patients 6 to 58 months old were given rifampin suspended in simple syrup or as dry powder mixed with applesauce at a dose of 10 mg/kg body weight. Peak serum concentrations of 10.7 ± 3.7 and 11.5 ± 5.1 mcg/mL were obtained 1 hour after preprandial ingestion of the drug suspension and the applesauce mixture, respectively. After the administration of either preparation, the t1/2 of rifampin averaged 2.9 hours. It should be noted that in other studies in pediatric populations, at doses of 10 mg/kg body weight, mean peak serum concentrations of 3.5 mcg/mL to 15 mcg/mL have been reported.

Isoniazid

After oral administration, isoniazid is readily absorbed from the GI tract and produces peak blood levels within 1 to 2 hours which decline to 50% or less within 6 hours. It diffuses readily into all body fluids (cerebrospinal, pleural, and ascitic fluids), tissues, organs, and excreta (saliva, sputum, and feces). Isoniazid is not substantially bound to plasma proteins. The drug also passes through the placental barrier and into milk in concentrations comparable to those in the plasma. The plasma half-life of isoniazid in patients with normal renal and hepatic function ranges from 1 to 4 hours, depending on the rate of metabolism. From 50% to 70% of a dose of isoniazid is excreted in the urine within 24 hours, mostly as metabolites.

Isoniazid is metabolized in the liver mainly by acetylation and dehydrazination. The rate of acetylation is genetically determined. Approximately 50% of African Americans and Caucasians are "slow inactivators" and the rest are "rapid inactivators"; the majority of Eskimos and Asians are "rapid inactivators." The rate of acetylation does not significantly alter the effectiveness of isoniazid. However, slow acetylation may lead to higher blood levels of the drug, and thus, an increase in toxic reactions.

Pyridoxine deficiency is sometimes observed in adults with high doses of isoniazid and is probably due to its competition with pyridoxal phosphate for the enzyme apotryptophanase.

Pyrazinamide

Pyrazinamide is well absorbed from the gastrointestinal tract and attains peak plasma concentrations within 2 hours. Plasma concentrations generally range from 30 to 50 mcg/mL with doses of 20 to 25 mg/kg. It is widely distributed in body tissues and fluids including the liver, lungs, and cerebrospinal fluid (CSF). The CSF concentration is approximately equal to concurrent steady-state plasma concentrations in patients with inflamed meninges. Pyrazinamide is approximately 10% bound to plasma proteins. The plasma half-life of pyrazinamide is 9 to 10 hours in patients with normal renal and hepatic function. The half-life of the drug may be prolonged in patients with impaired renal or hepatic function. Pyrazinamide is hydrolyzed in the liver to its major active metabolite, pyrazinoic acid. Pyrazinoic acid is hydroxylated to the main excretory product, 5-hydroxypyrazinoic acid.

Within 24 hours, approximately 70% of an oral dose of pyrazinamide is excreted in urine, mainly by glomerular filtration. About 4% to 14% of the dose is excreted as unchanged drug; the remainder is excreted as metabolites.[1]

References

  1. "RIFATER (RIFAMPIN, ISONIAZID AND PYRAZINAMIDE) TABLET, SUGAR COATED [SANOFI-AVENTIS U.S. LLC]". Text " accessdate " ignored (help)

Adapted from the FDA Package Insert.