Jump to: navigation, search

[n]Radialenes are alicyclic organic compounds containing n cross-conjugated exocyclic double bonds. The double bonds are commonly alkene groups but those with a carbonyl (C=O) group are also called radialenes [1]. For some members the unsubstituted parent radialenes are elusive but many substituted derivatives are known.

Radialenes are related to open-chain dendralenes and also to compounds like butadiene and benzene which also consist of a ring of sp2 hydridized carbon atoms.

Radialenes are investigated in organic chemistry for their unusual properties and reactivity but have not ventured outside the laboratory.


[3] and [4]radialenes are expected to have a planar molecular geometry with all carbon atoms in the same plane. This is verified experimentally in hexamethyl[3]radialene and cyclobutanetetraonetetrakis(hydrazone). Decamethyl[5]radialene has a twist envelope geometry with C2 symmetry while a chair conformation is calculated for [6]radialene and found experimentally for hexa-(ethylidene)cyclohexane

Synthesis & properties


The unsubstituted [4]radialene has been prepared in an elimination reaction of cis,trans,cis-tetra(bromomethyl)cyclobutane with sodium methoxide in ethanol [2]

Hydrogenation with platinum on carbon gives cis,cis,cis-tetramethylcyclobutane in accordance with the proposed structure. On standing in air at room temperature the compound accepts oxygen and polymerizes.


  1. Effect of Overcrowding in [n]Radialenes on the Synthesis of Bis[4]radialenesMenahem Kaftory, Mark Botoshansky, Shunji Hyoda, Toshihiro Watanabe, and Fumio Toda J. Org. Chem.; 1999; 64(7) pp 2287 - 2292; (Article) doi:10.1021/jo9818
  2. The Chemistry of Photodimers of Maleic and Fumaric Acid Derivatives. IV.1 Tetramethylenecyclobutane Gary W. Griffin and Laurence I. Peterson J. Am. Chem. Soc.; 1962; 84(17) pp 3398 - 3400; doi:10.1021/ja00876a033