Pleural empyema medical therapy

Jump to navigation Jump to search

Empyema Main Page

Pleural empyema Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pleural empyema from other Diseases

Epidemiology and Demographics

Screening

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

ECG

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Pleural empyema medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pleural empyema medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pleural empyema medical therapy

CDC on Pleural empyema medical therapy

Pleural empyema medical therapy in the news

Blogs on Pleural empyema medical therapy

Directions to Hospitals Treating Pleural empyema

Risk calculators and risk factors for Pleural empyema medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Chetan Lokhande, M.B.B.S [2] Prince Tano Djan, BSc, MBChB [3]

Overview

The mainstay of therapy for empyema includes:[1] controlling the infectious focus, drainage of fluid and pus, re-expansion of the lung. This involes the use of antimicrobial agents, thrombolytics,[2][3] and drainage of the pleural space.[4][5][6] Pharmacologic therapies for acute empyema include either Ceftriaxone, Nafcillin or Oxacillin, Vancomycin or Linezolid, or TMP-SMX. The preferred regimen for subacute and chronic empyema is a combination of Clindamycin and Ceftriaxone.

Medical Therapy

The mainstay of therapy for empyema includes:[1] controlling the infectious focus, drainage of fluid and pus, re-expansion of the lung. This involes the use of antimicrobial agents, thrombolytics,[2][3] and drainage of the pleural space.[4][5][6] Pharmacologic therapies for acute empyema include either Ceftriaxone, Nafcillin or Oxacillin, Vancomycin or Linezolid, or TMP-SMX. The preferred regimen for subacute and chronic empyema is a combination of Clindamycin and Ceftriaxone.

Pharmacotherapy

Acute Pharmacotherapies

  • Appropriate antibiotics are indicated in all patients with an underlying infection. Drainage of the pleural space should be considered early, as delay of even a few days is associated with an increase in morbidity and mortality.
    • Indications for chest tube drainage include:[4][5][6] a pH < 7.0, glucose < 40-50, gross pus, or organisms on Gram’s stain.
      • In borderline cases, reassessment with a repeat tap should be preformed in 12 – 24 hours. If the LDH is increasing, and the pH and glucose are decreasing, a chest tube should be placed immediately.
      • The chest tube should be at least a 28 F (smaller tubes become obstructed with fibrin clot), and left in place until the drainage is clear and yellow, and its volume is < 50 cc/day.
      • Patients will get better within 24 – 48 hours. If they don’t, suspect inadequate drainage due to loculations or inappropriate antibiotics.
    • Fibrinolytic agents
      • Empyema drainage is facilitated by the use of intrapleural use of fibrinolytic agents .[7][8][9][10][11][12]
      • Surgical thoracotomy with decortication is preferred to thorascopic debridement in patients who have more pleural thickness , larger cavity and adhesions.[13][14][15]
      • Thrombolytics (mainly Urokinase and Streptokinase) have been used to break up loculations and assist drainage.[16][17]
      • The typical Streptokinase (SK) dose is 250,000 units in 30 – 100 cc normal saline solution (NS), and the typical Urokinase dose in 100,000 units, also in 30 – 60 cc NS. They are instilled via the chest tube, left in place for 1-4 hours (chest tube clamped), and repeated daily as needed.
      • Two randomized studies comparing SK to chest tube drainage alone have shown an increase in the amount of drainage, however a statistical difference in the resolution of white blood cell (WBC) count and fever, the need for surgical drainage, or the duration of hospitalization has not been demonstrated.
    • More recently, however, VATS (video-assisted thoracoscopic surgery) has been compared to treatment by treatment with SK and chest tube drainage (SK-CT) in randomized trials.[1]
      • Wait et.al. studied 20 patients and found that VATS was associated with a significantly higher primary treatment success (91% vs. 44%), lower chest tube duration (6 days vs. 10 days) and a lower number of hospital days (9 vs. 13). VATS was also associated with a non-significant trend towards lower hospital costs.
        • They felt that SK-CT only delayed, and did not prevent definitive treatment with VATS.
        • It should be noted, however, that the patients in Wait’s study had fibrinopurulent empyema, and not simple parapneumonic effusions or chronic empyema.
    • Obviously, the definitive answer is still out on the optimal management of empyema, however, the above data may indicate a more aggressive approach in these patients.

Antibiotic Therapy

Following are the guidelines to treat Pleural empyema .[18][19]


▸ Click on the following categories to expand treatment regimens.

Pleural Empyema

  ▸   Neonates

  ▸   Infants/Children

  ▸   Adult

Neonates
Preferred Regimen
Age 0-7 days and Weight ≤ 2000 gm
If MSSA
Nafcillin 25 mg/kg IV q12h
OR
Oxacillin 25 mg/kg IV q12h
If MRSA
Vancomycin 12.5 mg/kg IV q12h
Age 7-28 days and Weight ≤ 2000 gm
If MSSA
Nafcillin 25 mg/kg q8h
OR
Oxacillin 25 mg/kg IV q12h
If MRSA
Vancomycin 15 mg/kg IV q12h
Age 0-7 days and Weight > 2000 gm
If MSSA
Nafcillin 25 mg/kg q8h
OR
Oxacillin 25 mg/kg IV q12h
If MRSA
Vancomycin 18 mg/kg IV q12h
Age 7-28 days and Weight > 2000 gm
If MSSA
Nafcillin37 mg/kg q6h
OR
'Oxacillin 37 mg/kg q6h
If MRSA
Vancomycin 22 mg/kg q12h
Infants/Children
Preferred Regimen
Cefotaxime 100 mg/kg IV q8h
OR
Ceftriaxone 100 mg/kg IV q24h
'If MSSA
Vancomycin 40 mg/kg/day IV in 3-4 divided doses
With or Without
▸ 'Cefotaxime 100 mg/kg IV q8h
OR
Ceftriaxone 100 mg/kg IV q24h
If H.Influenzae suspected
Adult
Preferred Regimen
For Strep. pneumoniae or Streptococcus sp (Group A)
Cefotaxime 2 gm IV q8h
OR
Ceftriaxone 2 gm IV q24h or Penicillin 12-18 million units IV divided q4h/day
OR
Ampicillin 8-12 gm IV divided q4h/day
For Staph. aureus
MSSA
Nafcillin2 gm IV q4h
OR
Oxacillin 2 gm IV q4h
MRSA
Vancomycin 10-15 mg/kg IV q8-12h
OR
Linezolid 600 mg IV q12h
For H. influenzae
Ceftriaxone 2 gm IV q24h
Subacute/Chronic
Clindamycin 450-900 mg IV q8h
PLUS
Ceftriaxone 2 gm IV q24h
Alternative Regimens
For Strep. pneumoniae or Streptococcus sp (Group A)
Vancomycin 1 gm IV q12h
For H. influenzae
TMP-SMX (5-10 mg/kg/day as trimethoprim component) IV/po in 2-3 divided doses
OR
Ampicillin Sulbactam 3 gm IV q6h (child dose 100-300 mg/kg/day IV divided q6h)
Chronic
Cefoxitin 2 gm IV q6-8h
OR
Imipenem 0.5 gm IV q6h
OR
Piperacillin Tazobactam 3.375 gm IV q6h (or 4-hour infusion of 3.375 gm q8h)
OR
Ampicillin Sulbactam 3 gm IV q6h
  • 1. Empiric antimicrobial therapy or culture negative therapy
  • Causative pathogens:
  • Streptococcus milleri
  • Streptococcus pneumoniae
  • Streptococcus intermedius
  • Staphylococcus aureus
  • Enterobacteriaceae
  • Escherichia coli
  • Fusobacterium spp.
  • Bacteroides spp.
  • Peptostreptococcus spp.
  • 2. Pathogen-based therapy
  • 2.1 Acute empyema
  • 2.1.1 Streptococcus pneumoniae, Group A streptrococcus
  • 2.1.2 Staphylococcus aureus
  • 2.1.2.1 MSSA
  • 2.1.2.2 MRSA
  • 2.1.3 Hemophilus influenzae
  • 2.2 Subacute/chronic empyema
  • 2.2.1 Anaerobic streptococcus, Streptococcus milleri, Bacteroides species, Enterobacteriaceae, Mycobacterium tuberculosis

References

  1. 1.0 1.1 1.2 Reichert M, Hecker M, Witte B, Bodner J, Padberg W, Weigand MA; et al. (2016). "Stage-directed therapy of pleural empyema". Langenbecks Arch Surg. doi:10.1007/s00423-016-1498-9. PMID 27815709.
  2. 2.0 2.1 Porcel JM, Valencia H, Bielsa S (2016). "Manual Intrapleural Saline Flushing Plus Urokinase: A Potentially Useful Therapy for Complicated Parapneumonic Effusions and Empyemas". Lung. doi:10.1007/s00408-016-9964-2. PMID 27866276.
  3. 3.0 3.1 Rahman NM, Maskell NA, West A, Teoh R, Arnold A, Mackinlay C; et al. (2011). "Intrapleural use of tissue plasminogen activator and DNase in pleural infection". N Engl J Med. 365 (6): 518–26. doi:10.1056/NEJMoa1012740. PMID 21830966. Review in: Ann Intern Med. 2011 Dec 20;155(12):JC6-9
  4. 4.0 4.1 4.2 Ashbaugh DG (1991). "Empyema thoracis. Factors influencing morbidity and mortality". Chest. 99 (5): 1162–5. PMID 2019172.
  5. 5.0 5.1 5.2 Light RW (1995). "A new classification of parapneumonic effusions and empyema". Chest. 108 (2): 299–301. PMID 7634854.
  6. 6.0 6.1 6.2 Colice GL, Curtis A, Deslauriers J, Heffner J, Light R, Littenberg B; et al. (2000). "Medical and surgical treatment of parapneumonic effusions : an evidence-based guideline". Chest. 118 (4): 1158–71. PMID 11035692.
  7. Jerjes-Sánchez, C.; Ramirez-Rivera, A.; Elizalde, JJ.; Delgado, R.; Cicero, R.; Ibarra-Perez, C.; Arroliga, AC.; Padua, A.; Portales, A. (1996). "Intrapleural fibrinolysis with streptokinase as an adjunctive treatment in hemothorax and empyema: a multicenter trial". Chest. 109 (6): 1514–9. PMID 8769503. Unknown parameter |month= ignored (help)
  8. Temes, RT.; Follis, F.; Kessler, RM.; Pett, SB.; Wernly, JA. (1996). "Intrapleural fibrinolytics in management of empyema thoracis". Chest. 110 (1): 102–6. PMID 8681611. Unknown parameter |month= ignored (help)
  9. Davies, RJ.; Traill, ZC.; Gleeson, FV. (1997). "Randomised controlled trial of intrapleural streptokinase in community acquired pleural infection". Thorax. 52 (5): 416–21. PMID 9176531. Unknown parameter |month= ignored (help)
  10. Bouros, D.; Schiza, S.; Tzanakis, N.; Chalkiadakis, G.; Drositis, J.; Siafakas, N. (1999). "Intrapleural urokinase versus normal saline in the treatment of complicated parapneumonic effusions and empyema. A randomized, double-blind study". Am J Respir Crit Care Med. 159 (1): 37–42. doi:10.1164/ajrccm.159.1.9803094. PMID 9872815. Unknown parameter |month= ignored (help)
  11. Diacon, AH.; Theron, J.; Schuurmans, MM.; Van de Wal, BW.; Bolliger, CT. (2004). "Intrapleural streptokinase for empyema and complicated parapneumonic effusions". Am J Respir Crit Care Med. 170 (1): 49–53. doi:10.1164/rccm.200312-1740OC. PMID 15044206. Unknown parameter |month= ignored (help)
  12. Thomson, AH.; Hull, J.; Kumar, MR.; Wallis, C.; Balfour Lynn, IM. (2002). "Randomised trial of intrapleural urokinase in the treatment of childhood empyema". Thorax. 57 (4): 343–7. PMID 11923554. Unknown parameter |month= ignored (help)
  13. Thommi, G.; Nair, CK.; Aronow, WS.; Shehan, C.; Meyers, P.; McLeay, M. "Efficacy and safety of intrapleural instillation of alteplase in the management of complicated pleural effusion or empyema". Am J Ther. 14 (4): 341–5. doi:10.1097/01.mjt.0000208275.88120.d1. PMID 17667208.
  14. Tuncozgur, B.; Ustunsoy, H.; Sivrikoz, MC.; Dikensoy, O.; Topal, M.; Sanli, M.; Elbeyli, L. (2001). "Intrapleural urokinase in the management of parapneumonic empyema: a randomised controlled trial". Int J Clin Pract. 55 (10): 658–60. PMID 11777287. Unknown parameter |month= ignored (help)
  15. Tokuda, Y.; Matsushima, D.; Stein, GH.; Miyagi, S. (2006). "Intrapleural fibrinolytic agents for empyema and complicated parapneumonic effusions: a meta-analysis". Chest. 129 (3): 783–90. doi:10.1378/chest.129.3.783. PMID 16537882. Unknown parameter |month= ignored (help)
  16. Porcel JM, Valencia H, Bielsa S (2016). "Manual Intrapleural Saline Flushing Plus Urokinase: A Potentially Useful Therapy for Complicated Parapneumonic Effusions and Empyemas". Lung. doi:10.1007/s00408-016-9964-2. PMID 27866276.
  17. Rahman NM, Maskell NA, West A, Teoh R, Arnold A, Mackinlay C; et al. (2011). "Intrapleural use of tissue plasminogen activator and DNase in pleural infection". N Engl J Med. 365 (6): 518–26. doi:10.1056/NEJMoa1012740. PMID 21830966. Review in: Ann Intern Med. 2011 Dec 20;155(12):JC6-9
  18. Bradley, JS.; Byington, CL.; Shah, SS.; Alverson, B.; Carter, ER.; Harrison, C.; Kaplan, SL.; Mace, SE.; McCracken, GH. (2011). "The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America". Clin Infect Dis. 53 (7): e25–76. doi:10.1093/cid/cir531. PMID 21880587. Unknown parameter |month= ignored (help)
  19. Rahman, NM.; Maskell, NA.; West, A.; Teoh, R.; Arnold, A.; Mackinlay, C.; Peckham, D.; Davies, CW.; Ali, N. (2011). "Intrapleural use of tissue plasminogen activator and DNase in pleural infection". N Engl J Med. 365 (6): 518–26. doi:10.1056/NEJMoa1012740. PMID 21830966. Unknown parameter |month= ignored (help)

Template:WH Template:WS