Butane

(Redirected from N-butane)
Jump to navigation Jump to search

Template:Chembox new

WikiDoc Resources for Butane

Articles

Most recent articles on Butane

Most cited articles on Butane

Review articles on Butane

Articles on Butane in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Butane

Images of Butane

Photos of Butane

Podcasts & MP3s on Butane

Videos on Butane

Evidence Based Medicine

Cochrane Collaboration on Butane

Bandolier on Butane

TRIP on Butane

Clinical Trials

Ongoing Trials on Butane at Clinical Trials.gov

Trial results on Butane

Clinical Trials on Butane at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Butane

NICE Guidance on Butane

NHS PRODIGY Guidance

FDA on Butane

CDC on Butane

Books

Books on Butane

News

Butane in the news

Be alerted to news on Butane

News trends on Butane

Commentary

Blogs on Butane

Definitions

Definitions of Butane

Patient Resources / Community

Patient resources on Butane

Discussion groups on Butane

Patient Handouts on Butane

Directions to Hospitals Treating Butane

Risk calculators and risk factors for Butane

Healthcare Provider Resources

Symptoms of Butane

Causes & Risk Factors for Butane

Diagnostic studies for Butane

Treatment of Butane

Continuing Medical Education (CME)

CME Programs on Butane

International

Butane en Espanol

Butane en Francais

Business

Butane in the Marketplace

Patents on Butane

Experimental / Informatics

List of terms related to Butane


Overview

Butane, also called n-butane, is the unbranched alkane with four carbon atoms, CH3CH2CH2CH3. Butane is also used as a collective term for n-butane together with its only other isomer, isobutane (also called methylpropane), CH(CH3)3.

Butanes are highly flammable, colorless, easily liquefied gases. The name butane was derived by back-formation from the name of butyric acid.

Reactions and uses

When oxygen is plentiful, butane burns to form carbon dioxide and water vapor; when oxygen is limited, carbon (soot) or carbon monoxide may also be formed.

2C4H10 + 13O2 → 8CO2 + 10H2O

n-Butane is the feedstock for DuPont's catalytic process for the preparation of maleic anhydride:

CH3CH2CH2CH3 + 3.5O2 → C2H2(CO)2O + 4H2O

n-Butane, like all hydrocarbons, undergoes free radical chlorination providing both 1-chloro- and 2-chlorobutanes, as well as more highly chlorinated derivatives. The relative rates of the chlorination is partially explained by the differing bond dissociation energies, 425 and 411 kJ/mol for the two types of C-H bonds. The two central carbon atoms have the slightly weaker C-H bonds.

Spectrum of the blue flame from a butane torch showing molecular radical band emission and Swan bands.

Butane gas is sold bottled as a fuel for cooking and camping. When blended with Propane and other hydrocarbons, it is referred to commercially as LPG. It is also used as a petrol component, as a feedstock for the production of base petrochemicals in steam cracking, as fuel for cigarette lighters and as a propellant in aerosol sprays.

Very pure forms of butane, especially isobutane, can be used as refrigerants and have largely replaced the ozone layer depleting halomethanes, for instance in household refrigerators and freezers. The flammability of butane is not a major issue because the amount of butane in an appliance is not enough to cause a combustible mix given the amount of air in a room. The system operating pressure for butane is lower than for the halomethanes, such as R-12, so direct conversion of R-12 systems to butane, such as in automotive air conditioning systems, will not function optimally.

Effects and health issues

Inhaling butane can cause drowsiness, narcosis, asphyxia; cardiac arrhythmia and frostbite, which can result in instant death from Asphyxiation, Acute toxicity and ventricular fibrillation. Butane is the most commonly misused volatile solvent in the UK, and was the cause of 52% of solvent related deaths in 2000.[1] By spraying butane directly into the throat, the jet of fluid can cool rapidly to –20 °C by expansion, causing prolonged laryngospasm.[2] "Sudden sniffing death syndrome", first described by Bass in 1970,[3] is the most common single cause of solvent related death, resulting in 55% of known fatal cases.[2]

Popular culture

  • Butane is referred to as "a bastard gas" on the television show King of the Hill.

References

  1. Trends in death Associated with Abuse of Volatile Substances 1971-2004 Field-Smith M, Bland JM, Taylor JC, et al., Department of Public Health Sciences. London: St George’s Medical School
  2. 2.0 2.1 Ramsey J, Anderson HR, Bloor K, et al. An introduction to the practice, prevalence and chemical toxicology of volatile substance abuse. Hum Toxicol 1989;8:261–9
  3. Bass M. Sudden sniffing death. JAMA 1970;212:2075–9

External links

Template:Alkanes

Template:E number infobox 930-949

ar:بوتان (كيمياء) be-x-old:Бутан (рэчыва) bs:Butan (plin) ca:Butà da:Butan de:Butan et:Butaan el:Βουτάνιο eo:Butano (kemio) gl:Butano ko:뷰테인 id:Butana it:Butano he:בוטאן ku:Bûtan (alkan) la:Butanum lv:Butāns lb:Butan lt:Butanas (dujos) hu:Bután nl:Butaan no:Butan nn:Butan sl:Butan (plin) sr:Бутан (једињење) fi:Butaani sv:Butan uk:Бутан (сполука)