ATRX

Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Transcriptional regulator ATRX also known as ATP-dependent helicase ATRX, X-linked helicase II, or X-linked nuclear protein (XNP) is a protein that in humans is encoded by the ATRX gene.[1][2][3]

Function

Transcriptional regulator ATRX contains an ATPase / helicase domain, and thus it belongs to the SWI/SNF family of chromatin remodeling proteins. ATRX is required for deposition of the histone variant H3.3 at telomeres and other genomic repeats.[4] These interactions are important for maintaining silencing at these sites.[5][6][7]

In addition, ATRX undergoes cell cycle-dependent phosphorylation, which regulates its nuclear matrix and chromatin association, and suggests its involvement in the gene regulation at interphase and chromosomal segregation in mitosis.[3]

Clinical significance

Inherited mutations

Inherited mutations of the ATRX gene are associated with an X-linked mental retardation (XLMR) syndrome most often accompanied by alpha-thalassemia (ATR-X) syndrome. These mutations have been shown to cause diverse changes in the pattern of DNA methylation, which may provide a link between chromatin remodeling, DNA methylation, and gene expression in developmental processes. Multiple alternatively spliced transcript variants encoding distinct isoforms have been reported. Female carriers may demonstrate skewed X chromosome inactivation.[3]

Somatic mutations

Acquired mutations in ATRX have been reported in a number of human cancers including pancreatic neuroendocrine tumours,[8] gliomas,[9] astrocytomas,[10] osteosarcomas,[11] and malignant pheochromocytomas.[12] There is a strong correlation between ATRX mutations and an Alternative Lengthening of Telomeres (ALT) phenotype in cancers.[8]

Interactions

ATRX forms a complex with DAXX which is an histone H3.3 chaperone.[13]

ATRX has been also shown to interact with EZH2.[14]

See also

References

  1. Stayton CL, Dabovic B, Gulisano M, Gecz J, Broccoli V, Giovanazzi S, et al. (November 1994). "Cloning and characterization of a new human Xq13 gene, encoding a putative helicase". Human Molecular Genetics. 3 (11): 1957–64. doi:10.1093/hmg/3.11.1957. PMID 7874112.
  2. Gibbons RJ, Suthers GK, Wilkie AO, Buckle VJ, Higgs DR (November 1992). "X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome: localization to Xq12-q21.31 by X inactivation and linkage analysis". American Journal of Human Genetics. 51 (5): 1136–49. PMC 1682840. PMID 1415255.
  3. 3.0 3.1 3.2 "Entrez Gene: ATRX alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, S. cerevisiae)".
  4. Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, et al. (March 2010). "ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells". Genome Research. 20 (3): 351–60. doi:10.1101/gr.101477.109. PMC 2840985. PMID 20110566.
  5. Voon HP, Hughes JR, Rode C, De La Rosa-Velázquez IA, Jenuwein T, Feil R, et al. (April 2015). "ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes". Cell Reports. 11 (3): 405–18. doi:10.1016/j.celrep.2015.03.036. PMC 4410944. PMID 25865896.
  6. Elsässer SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA (June 2015). "Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells". Nature. 522 (7555): 240–4. doi:10.1038/nature14345. PMC 4509593. PMID 25938714.
  7. Udugama M, M Chang FT, Chan FL, Tang MC, Pickett HA, R McGhie JD, et al. (December 2015). "Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres". Nucleic Acids Research. 43 (21): 10227–37. doi:10.1093/nar/gkv847. PMC 4666390. PMID 26304540.
  8. 8.0 8.1 Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. (July 2011). "Altered telomeres in tumors with ATRX and DAXX mutations". Science. 333 (6041): 425. doi:10.1126/science.1207313. PMC 3174141. PMID 21719641.
  9. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. (January 2012). "Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma". Nature. 482 (7384): 226–31. doi:10.1038/nature10833. PMID 22286061.
  10. Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER, et al. (October 2012). "Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma". Oncotarget. 3 (10): 1194–203. doi:10.18632/oncotarget.689. PMC 3717947. PMID 23104868.
  11. Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al. (April 2014). "Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma". Cell Reports. 7 (1): 104–12. doi:10.1016/j.celrep.2014.03.003. PMC 4096827. PMID 24703847.
  12. Comino-Méndez, I (June 2016). "ATRX driver mutation in a composite malignant pheochromocytoma". Cancer Genetics. 209 (6): 272. doi:10.1016/j.cancergen.2016.04.058.
  13. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (August 2010). "Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres". Proceedings of the National Academy of Sciences of the United States of America. 107 (32): 14075–80. doi:10.1073/pnas.1008850107. PMC 2922592. PMID 20651253.
  14. Cardoso C, Timsit S, Villard L, Khrestchatisky M, Fontès M, Colleaux L (April 1998). "Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein". Human Molecular Genetics. 7 (4): 679–84. doi:10.1093/hmg/7.4.679. PMID 9499421.

Further reading

External links