Metabolic alkalosis pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 4: Line 4:
{{CMG}}; {{AE}}  
{{CMG}}; {{AE}}  
==Overview==
==Overview==
The exact pathogenesis of [disease name] is not fully understood.
The normal [[physiological]] pH of [[blood]] is 7.35 to 7.45. An increase above this range is known to be [[Alkalosis]]. [[Metabolic Alkalosis]] is defined as a [[disease]] state where [[blood pH]] is more than 7.45 due to secondary metabolic processes. The primary [[PH buffer|pH]] buffers in maintaining [[chemical equilibrium]] of physiological [[Blood pH]] are [[alkaline]] [[Bicarbonate|Bicarbonate ions(HCO3]]) and [[acidic]] [[Carbon dioxide|carbon dioxide(CO2)]]. When there is increase amount of [[Bicarbonate|Bicarbonate(HCO3)]] in body or decrease amount of [[carbon dioxide]] or loss of [[hydrogen ions]] it causes [[alkalosis]].  [[Metabolic alkalosis]] occurs due to trapping of [[Bicarbonate|Bicarbonate ions]] (HCO3) or loss of [[hydrogen ions]] in body due to some [[metabolic]] causes for example- [[Gastrointestinal|gastrointestinal loss]] of [[hydrogen ions]], [[Intracellular|intracellular shifting]] of [[hydrogen ions]], [[renal]] [[hydrogen]] loss, increased [[Bicarbonate|bicarbonate ions]] in [[extracellular]] [[Compartments|compartment]], [[Diuretic|diuretic i]]<nowiki/>nduced [[alkalosis]] or [[contraction alkalosis]]. Patient with normal [[renal physiology]] will compensate this increase amount of [[bicarbonate]] through excretion. But impaired [[renal function]] [[secondary]] to [[Chloride|chloride depletion]], [[hypokalemia]], [[hyperaldosteronism]], reduced [[Glomerular filtration rate|glomerular function rate]], reduced [[Effective circulating volume|effective arterial blood volume]] ([[EABV|EABV)]]) in [[heart failure]] or [[cirrhosis]] will lead to [[metabolic alkalosis]]. When the [[physiologic]] [[blood pH]] is above 7.45, it triggers [[Respiratory centre of the medulla|respiratory center]] to cause [[hypoventilation]], thus decreased [[Carbon dioxide|PCO2]] leading to [[Compensatory responses for acid-base disorders|compensatory]] [[respiratory acidosis]]. The [[Carbon dioxide|PCO2]] increases about 0.5 to 0.7 mmHg to every 1.0 mM increase in [[Bicarbonate|plasma bicarbonate concentration]]. In severe [[Metabolic alkalosis]] [[Carbon dioxide|PCO2]] can reach 60 mmHg. The [[mortality rate]] with [[metabolic alkalosis]] is 45% with [[Arterial blood ph|arterial blood pH]] 7.55 to 80% with arterial blood pH of 7.65. [[Treatment]] is usually supportive based on cause of the [[Disease|disease.]]
 
OR
 
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
 
OR
 
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
 
OR
 
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
 
OR
 
 
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
 
OR
 
The progression to [disease name] usually involves the [molecular pathway].
 
OR
 
The pathophysiology of [disease/malignancy] depends on the histological subtype.


==Pathophysiology==
==Pathophysiology==

Revision as of 02:41, 1 February 2021

Metabolic alkalosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Metabolic alkalosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Metabolic alkalosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Metabolic alkalosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Metabolic alkalosis pathophysiology

CDC on Metabolic alkalosis pathophysiology

Metabolic alkalosis pathophysiology in the news

Blogs on Metabolic alkalosis pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Metabolic alkalosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

The normal physiological pH of blood is 7.35 to 7.45. An increase above this range is known to be Alkalosis. Metabolic Alkalosis is defined as a disease state where blood pH is more than 7.45 due to secondary metabolic processes. The primary pH buffers in maintaining chemical equilibrium of physiological Blood pH are alkaline Bicarbonate ions(HCO3) and acidic carbon dioxide(CO2). When there is increase amount of Bicarbonate(HCO3) in body or decrease amount of carbon dioxide or loss of hydrogen ions it causes alkalosis. Metabolic alkalosis occurs due to trapping of Bicarbonate ions (HCO3) or loss of hydrogen ions in body due to some metabolic causes for example- gastrointestinal loss of hydrogen ions, intracellular shifting of hydrogen ions, renal hydrogen loss, increased bicarbonate ions in extracellular compartment, diuretic induced alkalosis or contraction alkalosis. Patient with normal renal physiology will compensate this increase amount of bicarbonate through excretion. But impaired renal function secondary to chloride depletion, hypokalemia, hyperaldosteronism, reduced glomerular function rate, reduced effective arterial blood volume (EABV)) in heart failure or cirrhosis will lead to metabolic alkalosis. When the physiologic blood pH is above 7.45, it triggers respiratory center to cause hypoventilation, thus decreased PCO2 leading to compensatory respiratory acidosis. The PCO2 increases about 0.5 to 0.7 mmHg to every 1.0 mM increase in plasma bicarbonate concentration. In severe Metabolic alkalosis PCO2 can reach 60 mmHg. The mortality rate with metabolic alkalosis is 45% with arterial blood pH 7.55 to 80% with arterial blood pH of 7.65. Treatment is usually supportive based on cause of the disease.

Pathophysiology

Loss of hydrogen ions

GI loss

Renal

Increase in the serum bicarbonate

Shift of hydrogen ions into intracellular space

  • Seen in hypokalemia. Due to a low extracellular potassium concentration, potassium shifts out of the cells, and in order to maintain electrical neutrality, hydrogen shifts into the cells, leaving behind bicarbonate.

Contraction alkalosis

  • This results from a loss of water in the extracellular space which is poor in bicarbonate, typically from diuretic use. Since water is lost while bicarbonate is retained, the concentration of bicarbonate increases.

Compensation for Metabolic Alkalosis

  • The body attempts to compensate for the increase in pH by retaining carbon dioxide (CO2) through hypoventilation (respiratory compensation). CO2 combines with elements in the bloodstream to form carbonic acid, thus decreasing pH.
  • The pCO2 rises 0.5 - 1 for every 1 unit increase in serum HCO3 from a baseline of 24.
  • The maximum pCO2 in compensation is 55-60.
  • Renal compensation for metabolic alkalosis consists of increased excretion of HCO3- (bicarbonate), because the filtered load of HCO3- exceeds the ability of the renal tubule to reabsorb it.

Genetics

  • [Disease name] is transmitted in [mode of genetic transmission] pattern.
  • Genes involved in the pathogenesis of [disease name] include [gene1], [gene2], and [gene3].
  • The development of [disease name] is the result of multiple genetic mutations.

Associated Conditions

Gross Pathology

  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

Template:WH Template:WS