Marburg hemorrhagic fever pathophysiology

Revision as of 13:51, 19 October 2017 by Tarek Nafee (talk | contribs)
Jump to navigation Jump to search

Marburg hemorrhagic fever Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Marburg hemorrhagic fever from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Case Studies

Case #1

Marburg hemorrhagic fever pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Marburg hemorrhagic fever pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Marburg hemorrhagic fever pathophysiology

CDC on Marburg hemorrhagic fever pathophysiology

Marburg hemorrhagic fever pathophysiology in the news

Blogs on Marburg hemorrhagic fever pathophysiology

Directions to Hospitals Treating Marburg hemorrhagic fever

Risk calculators and risk factors for Marburg hemorrhagic fever pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief:

Overview

Pathophysiology

Pathogen

Electron micrograph (TEM) of the Marburg Hemorrhagic Virus (MHV) . Image provided by the CDC Centers for Disease Control and Prevention [1]
  • Marburg virus is the causative agent of Marburg haemorrhagic fever (MHF). Marburg and Ebola viruses are the two members of the Filoviridae family (filovirus). Though caused by different viruses, the two diseases are clinically similar.
  • The viral structure is typical of filoviruses, with long threadlike particles which have a consistent diameter but vary greatly in length from an average of 800 nanometers up to 14,000 nm. Peak infectious activity is at approximately 790 nm.
  • Virions contain seven known structural proteins. Four proteins form the nucelocapsid of the Marburg virus: NP, VP35, VP30, and L.[2] While nearly identical to Ebola virus in structure, Marburg virus is antigenically distinct from Ebola virus.
  • Marburg virus was the first filovirus to be identified.

Transmission

  • Initial human infection results from prolonged exposure to mines or caves inhabited by Rousettus bat colonies. The reservoir host of Marburg virus is the African fruit bat, Rousettus aegyptiacus. Primates (including humans) can become infected with Marburg virus, and may develop serious disease with high mortality.
  • Transmission is mainly human-to-human, resulting from close contact with the blood, secretions, organs or other bodily fluids of infected persons.[3]
  • Transmission via infected semen can occur up to seven weeks after clinical recovery.
  • Transmission to health-care workers has been reported while treating Marburg patients, mainly due to incorrect or inadequate use of personal protective equipment.

References

  1. "http://phil.cdc.gov/phil/details.asp". External link in |title= (help)
  2. Becker S, Rinne C, Hofsäss U, Klenk HD, Mühlberger E (1998). "Interactions of Marburg virus nucleocapsid proteins". Virology. 249 (2): 406–17. doi:10.1006/viro.1998.9328. PMID 9791031.
  3. Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB; et al. (2002). "Hemorrhagic fever viruses as biological weapons: medical and public health management". JAMA. 287 (18): 2391–405. PMID 11988060.