Chronic stable angina cardiac magnetic resonance imaging: Difference between revisions

Jump to navigation Jump to search
(New page: {{Chronic stable angina}} '''Editors-In-Chief:''' C. Michael Gibson, M.S., M.D. [mailto:mgibson@perfuse.org] Phone:617-632-7753; {{CZ}}; '''Associate Editor-in-Chief:''' Smita Kohli, M...)
 
No edit summary
Line 1: Line 1:
{{Chronic stable angina}}
{{Chronic stable angina}}
'''Editors-In-Chief:''' [[C. Michael Gibson, M.S., M.D.]] [mailto:mgibson@perfuse.org] Phone:617-632-7753; {{CZ}}; '''Associate Editor-in-Chief:''' Smita Kohli, M.D.
'''Editor-In-Chief:''' [[C. Michael Gibson, M.S., M.D.]] [mailto:mgibson@perfuse.org] Phone:617-632-7753; '''Associate Editor(s)-in-Chief:''' {{CZ}}; Smita Kohli, M.D.; [[Lakshmi Gopalakrishnan]], M.B.B.S.


==Cardiac Magnetic Resonance Imaging (CMRI)==
==Overview==
Cardiac magnetic resonance imaging (CMRI) is a non-invasive test that is useful in the evaluation of overall coronary anatomy and function, and also holds a potential for '''plaque characterization''' .


There are several approaches to detecting [[coronary artery disease]] using cardiac magnetic resonance imaging (CMRI). These include:
==Indications for CMR based on Consensus Panel report <ref name="pmid15522474">Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15522474 Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report.] ''Eur Heart J'' 25 (21):1940-65. [http://dx.doi.org/10.1016/j.ehj.2004.06.040 DOI:10.1016/j.ehj.2004.06.040] PMID: [http://pubmed.gov/15522474 15522474]</ref>==


*Visualization of the effects of induced [[ischemia]] (wall motion, perfusion) and
{{cquote|
*Direct visualization of coronary arteries (coronary angiography and flow).
===Class I===
'''1.''' Assessment of global ventricular (left and right) function and mass


'''2.''' Detection of [[coronary artery disease]]
:'''a.''' Coronary MRA (anomalies)


Early detection of [[atherosclerosis]] and endothelial dysfunction is also possible (arterial wall imaging, brachial artery reactivity).
'''3.''' Acute and chronic [[myocardial infarction]]
:'''a.''' Detection and assessment
:'''b.''' Myocardial viability


*Stress wall motion abnormalities
===Class II===
*Myocardial perfusion
'''1.''' Detection of coronary artery disease
*Coronary angiography and coronary flow evaluation
:'''a.''' [[Chronic stable angina risk stratification based upon rest left ventricular function|Regional left ventricular function at rest]] and during [[Chronic stable angina perfusion scintigraphy with pharmacologic stress|dobutamine stress]]
:'''b.''' Assessment of myocardial perfusion
:'''c.''' Coronary MRA of bypass graft patency
 
'''2.''' Acute and chronic myocardial infarction
:'''a.''' Ventricular thrombus
 
===Class III===
'''1.''' Detection of coronary artery disease
:'''a.''' Coronary MRA (CAD)
 
'''2.''' Acute and chronic myocardial infarction
:'''a.''' [[Ventricular septal defect]]
:'''b.''' [[Mitral regurgitation]] (acute MI)
 
===Class Inv===
'''1.''' Detection of coronary artery disease
:'''a.''' MR flow measurements in the coronary arteries
:'''b.''' Arterial wall imaging
 
'''2.''' Acute and chronic myocardial infarction
:'''a.''' [[Acute coronary syndromes]]}}
 
''Note:''
*Class I: provides clinically relevant information and is usually appropriate; may be used as first line imaging technique; usually supported by substantial literature.
 
*Class II: provides clinically relevant information and is frequently useful; other techniques may provide similar information; supported by limited literature.
 
*Class III: provides clinically relevant information but is infrequently used because information from other imaging techniques is usually adequate.
 
*Class Inv: potentially useful, but still investigational.
 
==Detection of CAD==
*'''Early detection''' of [[atherosclerosis]] and endothelial dysfunction using CMRI is possible with arterial wall imaging and assessing the reactivity of brachial artery.
 
*Alternative approaches include:
:*Visualization of the effects of induced [[ischemia]] (wall motion, perfusion)
::*'''Stress wall motion abnormalities:''' In patients with [[CAD]], dobutamine stress CMR is helpful to identify ischemia-induced wall motion abnormalities <ref name="pmid11816623">Nagel E, Lorenz C, Baer F, Hundley WG, Wilke N, Neubauer S et al. (2001) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11816623 Stress cardiovascular magnetic resonance: consensus panel report.] ''J Cardiovasc Magn Reson'' 3 (3):267-81. PMID: [http://pubmed.gov/11816623 11816623]</ref> and is considered effective is patients who are unsuitable for dobutamine echocardiography <ref name="pmid10525488">Hundley WG, Hamilton CA, Thomas MS, Herrington DM, Salido TB, Kitzman DW et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10525488 Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography.] ''Circulation'' 100 (16):1697-702. PMID: [http://pubmed.gov/10525488 10525488]</ref>.
 
::*'''Myocardial perfusion:''' In patients with [[CAD]], CMR showed improvement in myocardial perfusion after coronary angioplasty <ref name="pmid11079658">Al-Saadi N, Nagel E, Gross M, Schnackenburg B, Paetsch I, Klein C et al. (2000) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11079658 Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging.] ''J Am Coll Cardiol'' 36 (5):1557-64. PMID: [http://pubmed.gov/11079658 11079658]</ref> and in patients with [[Syndrome X|cadiac syndrome X]] impaired sub-endocardial perfusion was observed <ref name="pmid12075055">Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P et al. (2002) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12075055 Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging.] ''N Engl J Med'' 346 (25):1948-53. [http://dx.doi.org/10.1056/NEJMoa012369 DOI:10.1056/NEJMoa012369] PMID: [http://pubmed.gov/12075055 12075055]</ref>.
 
:*Direct visualization of coronary arteries (coronary angiography and flow)
::*'''Coronary angiography and coronary flow evaluation:''' Coronary flow reserve is useful in the identification of LAD stenosis <ref name="pmid10385498">Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA et al. (1999) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=10385498 Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging.] ''Circulation'' 99 (25):3248-54. PMID: [http://pubmed.gov/10385498 10385498]</ref> and in-stent restenosis <ref name="pmid12665488">Nagel E, Thouet T, Klein C, Schalla S, Bornstedt A, Schnackenburg B et al. (2003) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=12665488 Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment.] ''Circulation'' 107 (13):1738-43. [http://dx.doi.org/10.1161/01.CIR.0000060542.79482.81 DOI:10.1161/01.CIR.0000060542.79482.81] PMID: [http://pubmed.gov/12665488 12665488]</ref>. CMR imaging is also very accurate in the prediction of graft patency <ref name="pmid11756716">Langerak SE, Kunz P, Vliegen HW, Jukema JW, Zwinderman AH, Steendijk P et al. (2002) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=11756716 MR flow mapping in coronary artery bypass grafts: a validation study with Doppler flow measurements.] ''Radiology'' 222 (1):127-35. PMID: [http://pubmed.gov/11756716 11756716]</ref>.


==References==
==References==

Revision as of 02:01, 16 August 2011

Chronic stable angina Microchapters

Acute Coronary Syndrome Main Page

Home

Patient Information

Overview

Historical Perspective

Classification

Classic
Chronic Stable Angina
Atypical
Walk through Angina
Mixed Angina
Nocturnal Angina
Postprandial Angina
Cardiac Syndrome X
Vasospastic Angina

Differentiating Chronic Stable Angina from Acute Coronary Syndromes

Pathophysiology

Epidemiology and Demographics

Risk Stratification

Pretest Probability of CAD in a Patient with Angina

Prognosis

Diagnosis

History and Symptoms

Physical Examination

Test Selection Guideline for the Individual Basis

Laboratory Findings

Electrocardiogram

Exercise ECG

Chest X Ray

Myocardial Perfusion Scintigraphy with Pharmacologic Stress

Myocardial Perfusion Scintigraphy with Thallium

Echocardiography

Exercise Echocardiography

Computed coronary tomography angiography(CCTA)

Positron Emission Tomography

Ambulatory ST Segment Monitoring

Electron Beam Tomography

Cardiac Magnetic Resonance Imaging

Coronary Angiography

Treatment

Medical Therapy

Revascularization

PCI
CABG
Hybrid Coronary Revascularization

Alternative Therapies for Refractory Angina

Transmyocardial Revascularization (TMR)
Spinal Cord Stimulation (SCS)
Enhanced External Counter Pulsation (EECP)
ACC/AHA Guidelines for Alternative Therapies in patients with Refractory Angina

Discharge Care

Patient Follow-Up
Rehabilitation

Secondary Prevention

Guidelines for Asymptomatic Patients

Noninvasive Testing in Asymptomatic Patients
Risk Stratification by Coronary Angiography
Pharmacotherapy to Prevent MI and Death in Asymptomatic Patients

Landmark Trials

Case Studies

Case #1

Chronic stable angina cardiac magnetic resonance imaging On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Chronic stable angina cardiac magnetic resonance imaging

CDC onChronic stable angina cardiac magnetic resonance imaging

Chronic stable angina cardiac magnetic resonance imaging in the news

Blogs on Chronic stable angina cardiac magnetic resonance imaging

to Hospitals Treating Chronic stable angina cardiac magnetic resonance imaging

Risk calculators and risk factors for Chronic stable angina cardiac magnetic resonance imaging

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Phone:617-632-7753; Associate Editor(s)-in-Chief: Cafer Zorkun, M.D., Ph.D. [2]; Smita Kohli, M.D.; Lakshmi Gopalakrishnan, M.B.B.S.

Overview

Cardiac magnetic resonance imaging (CMRI) is a non-invasive test that is useful in the evaluation of overall coronary anatomy and function, and also holds a potential for plaque characterization .

Indications for CMR based on Consensus Panel report [1]

Class I

1. Assessment of global ventricular (left and right) function and mass

2. Detection of coronary artery disease

a. Coronary MRA (anomalies)

3. Acute and chronic myocardial infarction

a. Detection and assessment
b. Myocardial viability

Class II

1. Detection of coronary artery disease

a. Regional left ventricular function at rest and during dobutamine stress
b. Assessment of myocardial perfusion
c. Coronary MRA of bypass graft patency

2. Acute and chronic myocardial infarction

a. Ventricular thrombus

Class III

1. Detection of coronary artery disease

a. Coronary MRA (CAD)

2. Acute and chronic myocardial infarction

a. Ventricular septal defect
b. Mitral regurgitation (acute MI)

Class Inv

1. Detection of coronary artery disease

a. MR flow measurements in the coronary arteries
b. Arterial wall imaging

2. Acute and chronic myocardial infarction

a. Acute coronary syndromes

Note:

  • Class I: provides clinically relevant information and is usually appropriate; may be used as first line imaging technique; usually supported by substantial literature.
  • Class II: provides clinically relevant information and is frequently useful; other techniques may provide similar information; supported by limited literature.
  • Class III: provides clinically relevant information but is infrequently used because information from other imaging techniques is usually adequate.
  • Class Inv: potentially useful, but still investigational.

Detection of CAD

  • Early detection of atherosclerosis and endothelial dysfunction using CMRI is possible with arterial wall imaging and assessing the reactivity of brachial artery.
  • Alternative approaches include:
  • Visualization of the effects of induced ischemia (wall motion, perfusion)
  • Stress wall motion abnormalities: In patients with CAD, dobutamine stress CMR is helpful to identify ischemia-induced wall motion abnormalities [2] and is considered effective is patients who are unsuitable for dobutamine echocardiography [3].
  • Myocardial perfusion: In patients with CAD, CMR showed improvement in myocardial perfusion after coronary angioplasty [4] and in patients with cadiac syndrome X impaired sub-endocardial perfusion was observed [5].
  • Direct visualization of coronary arteries (coronary angiography and flow)
  • Coronary angiography and coronary flow evaluation: Coronary flow reserve is useful in the identification of LAD stenosis [6] and in-stent restenosis [7]. CMR imaging is also very accurate in the prediction of graft patency [8].

References

  1. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE et al. (2004) Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 25 (21):1940-65. DOI:10.1016/j.ehj.2004.06.040 PMID: 15522474
  2. Nagel E, Lorenz C, Baer F, Hundley WG, Wilke N, Neubauer S et al. (2001) Stress cardiovascular magnetic resonance: consensus panel report. J Cardiovasc Magn Reson 3 (3):267-81. PMID: 11816623
  3. Hundley WG, Hamilton CA, Thomas MS, Herrington DM, Salido TB, Kitzman DW et al. (1999) Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 100 (16):1697-702. PMID: 10525488
  4. Al-Saadi N, Nagel E, Gross M, Schnackenburg B, Paetsch I, Klein C et al. (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36 (5):1557-64. PMID: 11079658
  5. Panting JR, Gatehouse PD, Yang GZ, Grothues F, Firmin DN, Collins P et al. (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346 (25):1948-53. DOI:10.1056/NEJMoa012369 PMID: 12075055
  6. Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA et al. (1999) Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 99 (25):3248-54. PMID: 10385498
  7. Nagel E, Thouet T, Klein C, Schalla S, Bornstedt A, Schnackenburg B et al. (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 107 (13):1738-43. DOI:10.1161/01.CIR.0000060542.79482.81 PMID: 12665488
  8. Langerak SE, Kunz P, Vliegen HW, Jukema JW, Zwinderman AH, Steendijk P et al. (2002) MR flow mapping in coronary artery bypass grafts: a validation study with Doppler flow measurements. Radiology 222 (1):127-35. PMID: 11756716


Template:WikiDoc Sources