Thrombophilia pathophysiology

Jump to: navigation, search


Thrombophilia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Thrombophilia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Thrombophilia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Thrombophilia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Thrombophilia pathophysiology

CDC on Thrombophilia pathophysiology

Thrombophilia pathophysiology in the news

Blogs on Thrombophilia pathophysiology</small>

Directions to Hospitals Treating Thrombophilia

Risk calculators and risk factors for Thrombophilia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

The Virchow's triad has been described classically as the patho-physiologic mechanism responsible for any thrombosis, which includes 3 components:

The mechanism of thrombophilia involves affecting the pathway of thrombosis[1]:

Figure thrombophilia mechanism.jpg

Adapted from: N Engl J Med. 2001 Apr 19;344(16):1222-31.

References

  1. Seligsohn U, Lubetsky A (April 2001). "Genetic susceptibility to venous thrombosis". N. Engl. J. Med. 344 (16): 1222–31. doi:10.1056/NEJM200104193441607. PMID 11309638.

Linked-in.jpg