Bubonic plague causes

Jump to navigation Jump to search

Bubonic plague Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Bubonic plague from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Bubonic plague causes On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Bubonic plague causes

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Bubonic plague causes

CDC on Bubonic plague causes

Bubonic plague causes in the news

Blogs on Bubonic plague causes

Directions to Hospitals Treating Bubonic plague

Risk calculators and risk factors for Bubonic plague causes

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

The major forms of plague are caused by yersinia pestis living in rodents. The disease is then transferred to humans from the fleas that originally bit the infected rodent.

Causes

Plague is caused by the organism yersinia pestis. Rodents, such as rats, spread the disease to humans. People can get the plague when they are bitten by a flea that carries the plague bacteria from an infected rodent. In rare cases, you may get the disease when handling an infected animal. Certain forms of the plague can be spread from human to human. When someone with pneumonic plague coughs, microscopic droplets carrying the infection move through the air. Anyone who breathes in these particles may catch the disease. An epidemic may be started this way. In the middle ages, massive plague epidemics killed millions of people.

Pathophysiology

A scanning electron micrograph depicting a mass of Yersinia pestis bacteria
  • Pathogenicity of Y. pestis is in part due to two anti-phagocytic antigens, named F1 (Fraction 1) and V, both important for virulence.[1] These antigens are produced by the bacterium at 37°C.
  • Furthermore, Y. pestis survives and produces F1 and V antigens within blood cells such as monocytes, but not in polymorphonuclear neutrophils. * Natural or induced immunity is achieved by the production of specific opsonic antibodies against F1 and V antigens; antibodies against F1 and V induce phagocytosis by neutrophils.[2]
  • A formalin-inactivated vaccine once was available for adults at high risk of contracting the plague until removal from the market by the FDA. It was of limited effectiveness and may cause severe inflammation.
  • Experiments with genetic engineering of a vaccine based on F1 and V antigens are underway and show promise; however, bacteria lacking antigen F1 are still virulent, and the V antigens are sufficiently variable, that vaccines composed of these antigens may not be fully protective[3].

Genetics

  • The complete genomic sequence is available for two of the three sub-species of Y. pestis: strain KIM (of biovar Medievalis)[4], and strain CO92 (of biovar Orientalis, obtained from a clinical isolate in the United States)[5]; as of 2006, the genomic sequence of a strain of biovar Antiqua has not yet been completed.
  • The chromosome of strain KIM is 4,600,755 base pairs long; the chromosome of strain CO92 is 4,653,728 base pairs long. Like its cousins Y. pseudotuberculosis and Y. enterocolitica, Y. pestis is host to the plasmid pCD1.
  • In addition, it also hosts two other plasmids, pPCP1 and pMT1 which are not carried by the other Yersinia species. Together, these plasmids, and a pathogenicity island called HPI, encode several proteins which cause the pathogenicity for which Y. pestis is famous.
  • Among other things, these virulence factors are required for bacterial adhesion and injection of proteins into the host cell, invasion of bacteria into the host cell, and acquisition and binding of iron harvested from red blood cells.
  • Y. pestis is thought to be descendant from Y. pseudotuberculosis, differing only in the presence of specific virulence plasmids.
  • A recent comprehensive and comparative proteomics analysis of Y. pestis: strain KIM was recently performed [6] , this analysis focused on the transition to a growth condition mimicking growth in host cells.

Susceptibility

Images

Male Xenopsylla cheopis (oriental rat flea) engorged with blood. This flea is the primary vector of plague in most large plague epidemics in Asia, Africa, and South America. Both male and female fleas can transmit the infection.


References

  1. Salyers AA, Whitt DD (2002). Bacterial Pathogenesis: A Molecular Approach (2nd ed. ed.). ASM Press. pp. 207-12.
  2. Welkos S; et al. (2002). "Determination of the virulence of the pigmentation-deficient and pigmentation-/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague". Vaccine. 20: 2206&ndash, 2214. PMID 12009274.
  3. Deng W; et al. (2002). "Genome Sequence of Yersinia pestis KIM". Journal of Bacteriology. 184 (16): 4601&ndash, 4611. PMID 12142430.
  4. Parkhill J; et al. (2001). "Genome sequence of Yersinia pestis, the causative agent of plague". Nature. 413: 523&ndash, 527. PMID 11586360.
  5. Hixson K; et al. (2006). "Biomarker candidate identification in Yersinia pestis using organism-wide semiquantitative proteomics". Journal of Proteome Research. 5 (11): 3008–3017. PMID 16684765.
  6. Wagle PM. (1948). "Recent advances in the treatment of bubonic plague". Indian J Med Sci. 2: 489&ndash, 94.
  7. Meyer KF. (1950). "Modern therapy of plague". JAMA. 144: 982&ndash, 5. PMID 14774219.
  8. Kilonzo BS, Makundi RH, Mbise TJ. (1992). "A decade of plague epidemiology and control in the Western Usambara mountains, north-east Tanzania". Acta Tropica. 50: 323&ndash, 9. PMID 1356303.
  9. Mwengee W, Butler T, Mgema S; et al. (2006). "Treatment of plague with gentamicin or doxycycline in a randomized clinical trial in Tanzania". Clin Infect Dis. 42: 614&ndash, 21. PMID 16447105.

br:Yersinia pestis cs:Yersinia pestis cy:Yersinia pestis da:Yersinia pestis de:Yersinia pestis it:Yersinia pestis he:Yersinia pestis la:Yersinia pestis nl:Yersinia pestis no:Yersinia pestis simple:Yersinia pestis sl:Yersinia pestis sv:Yersinia pestis uk:Yersinia pestis


Template:WikiDoc Sources