Borrelia

Jump to: navigation, search
Borrelia
Scientific classification
Kingdom: Bacteria
Phylum: Spirochaetes
Class: Spirochaetes
Order: Spirochaetales
Family: Spirochaetaceae
Genus: Borrelia
Species

Borrelia afzelii
Borrelia anserina
Borrelia burgdorferi
Borrelia garinii
Borrelia hermsii
Borrelia recurrentis
Borrelia valaisiana
etc.

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Borrelia is a genus of bacteria of the spirochete class. It is a zoonotic, vector-borne disease transmitted primarily by ticks and some by lice, depending on the species. There are 37 known species of Borrelia.

Borreliosis (Lyme disease)

Of the 37 known species of Borrelia, 12 of these species are known to cause Lyme disease or borreliosis and are transmitted by ticks. The major Borrelia species causing Lyme disease are Borrelia burgdorferi, Borrelia afzelii, Borrelia garinii and Borrelia valaisiana.

Species and Strains

Until recently it was thought that only three genospecies caused Lyme disease (borreliosis): B. burgdorferi sensu stricto ( the predominant species in North America, but also present in Europe); B. afzelii; and B. garinii (both predominant in Eurasia). To date the complete genome of B. burgdorferi sensu stricto strain B31, B. afzelii strain PKo and B. garinii strain PBi is known. B. burgdorferi strain B31 was derived by limited dilutional cloning from the original Lyme-disease tick isolate derived by Alan Barbour. There are over 300 species or strains of Borrelia world wide with apx 100 in the U.S. and it is unknown how many cause lyme like sickness, but many of them may.

At present, diagnostic tests are based only on B. burgdorferi sensu stricto (the only species used in the U.S.), B. afzelii, and B. garinii.

Emerging Genospecies

  • B. valaisiana was identified as a genomic species from Strain VS116, and named B. valaisiana in 1997.[1] It was later detected by Polymerase chain reaction (PCR) in human cerebral spinal fluid (CSF) in Greece.[2] B. valaisiana has been isolated throughout Europe, as well east Asia.[3]

Newly discovered genospecies have also been found to cause disease in humans:

  • B. lusitaniae [4] in Europe (especially Portugal), North Africa and Asia.
  • B. bissettii [5][6] in the U.S. and Europe.
  • B. spielmanii [7][8] in Europe.

Additional B. burgdorferi sensu lato genospecies suspected of causing illness, but not confirmed by culture, include B. japonica, B. tanukii and B. turdae (Japan); B. sinica (China); and B. andersonii (U.S.). Some of these species are carried by ticks not currently recognized as carriers of Lyme disease.

The B. miyamotoi spirochete, related to the relapsing fever group of spirochetes, is also suspected of causing illness in Japan. Spirochetes similar to B. miyamotoi have recently been found in both I. ricinus ticks in Sweden and I. scapularis ticks in the U.S.[9][10]

B. lonestari

Apart from this group of closely related genospecies, additional Borrelia species of interest include B. lonestari, a spirochete recently detected in the Amblyomma americanum tick (Lone Star tick) in the U.S.[11] B. lonestari is suspected of causing STARI (Southern Tick-Associated Rash Illness), also known as Masters disease in honor of its discoverer Ed Masters. The illness follows a Lone Star tick bite and clinically resembles Lyme disease, but sufferers usually test negative for Lyme.[12]There is currently no diagnostic test available for STARI/Masters, and no official treatment protocol, though antibiotics are generally prescribed.

Relapsing fever

Other Borrelia species cause relapsing fever such as Borrelia recurrentis, caused by the human body louse. No animal reservoir of B. recurrentis exists. Lice that feed on infected humans acquire the Borrelia organisms that then multiply in the gut of the louse. When an infected louse feeds on an uninfected human, the organism gains access when the victim crushes the louse or scratches the area where the louse is feeding. B. recurrentis infects the person via mucous membranes and then invades the bloodstream.

Other tick-borne relapsing infections are acquired from other species, such as Borrelia hermsii or Borrelia Parkeri, which can be spread from rodents, and serve as a reservoir for the infection, via a tick vector. Borelia hermsii and Borrelia recurrentis cause very similar diseases although the disease associated with Borrelia hermsii has more relapses and is responsible for more fatalities, while the disease caused by B. recurrentis has longer febrile and afebrile intervals and a longer incubation period.

Gallery

External links


References

  1. Wang G, van Dam AP, Le Fleche A; et al. (1997). "Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19)". Int. J. Syst. Bacteriol. 47 (4): 926–32. PMID 9336888.
  2. Diza E, Papa A, Vezyri E, Tsounis S, Milonas I, Antoniadis A (2004). "Borrelia valaisiana in cerebrospinal fluid". Emerging Infect. Dis. 10 (9): 1692–3. PMID 15503409.
  3. Masuzawa T (2004). "Terrestrial distribution of the Lyme borreliosis agent Borrelia burgdorferi sensu lato in East Asia". Jpn. J. Infect. Dis. 57 (6): 229–35. PMID 15623946.
  4. Collares-Pereira M, Couceiro S, Franca I, Kurtenbach K, Schafer SM, Vitorino L, Goncalves L, Baptista S, Vieira ML, Cunha C (2004). "First isolation of Borrelia lusitaniae from a human patient" (PDF). J Clin Microbiol. 42 (3): 1316–8. PMID 15004107.
  5. Postic D, Ras NM, Lane RS, Hendson M, Baranton G (1998). "Expanded diversity among Californian borrelia isolates and description of Borrelia bissettii sp. nov. (formerly Borrelia group DN127)" (PDF). J Clin Microbiol. 36 (12): 3497–504. PMID 9817861.
  6. Maraspin V, Cimperman J, Lotric-Furlan S, Ruzic-Sabljic E, Jurca T, Picken RN, Strle F (2002). "Solitary borrelial lymphocytoma in adult patients". Wien Klin Wochenschr. 114 (13–14): 515–23. PMID 12422593.
  7. Richter D, Postic D, Sertour N, Livey I, Matuschka FR, Baranton G (2006). "Delineation of Borrelia burgdorferi sensu lato species by multilocus sequence analysis and confirmation of the delineation of Borrelia spielmanii sp. nov". Int J Syst Evol Microbiol. 56 (Pt 4): 873–81. PMID 16585709.
  8. Foldvari G, Farkas R, Lakos A (2005). "Borrelia spielmanii erythema migrans, Hungary". Emerg Infect Dis. 11 (11): 1794–5. PMID 16422006.
  9. Scoles GA, Papero M, Beati L, Fish D (2001). "A relapsing fever group spirochete transmitted by Ixodes scapularis ticks". Vector Borne Zoonotic Dis. 1 (1): 21–34. PMID 12653133.
  10. Bunikis J, Tsao J, Garpmo U, Berglund J, Fish D, Barbour AG (2004). "Typing of Borrelia relapsing fever group strains". Emerg Infect Dis. 10 (9): 1661–4. PMID 15498172.
  11. Varela AS, Luttrell MP, Howerth EW, Moore VA, Davidson WR, Stallknecht DE, Little SE (2004). "First culture isolation of Borrelia lonestari, putative agent of southern tick-associated rash illness" (PDF). J Clin Microbiol. 42 (3): 1163–9. PMID 15004069.
  12. Masters E, Granter S, Duray P, Cordes P (1998). "Physician-diagnosed erythema migrans and erythema migrans-like rashes following Lone Star tick bites". Arch Dermatol. 134 (8): 955–60. PMID 9722725.
  13. 13.0 13.1 13.2 13.3 13.4 13.5 "Public Health Image Library (PHIL)".

Linked-in.jpg