TGFB1I1

Revision as of 23:41, 31 July 2017 by en>Me, Myself, and I are Here (layout)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Transforming growth factor beta-1-induced transcript 1 protein is a protein that in humans is encoded by the TGFB1I1 gene.[1][2]

Interactions

TGFB1I1 has been shown to interact with:

Model organisms

Model organisms have been used in the study of TGFB1I1 function. A conditional knockout mouse line called Tgfb1i1tm1b(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[10] Male and female animals underwent a standardized phenotypic screen[11] to determine the effects of deletion.[12][13][14][15] Additional screens performed: - In-depth immunological phenotyping[16]

See also

References

  1. 1.0 1.1 1.2 Matsuya M, Sasaki H, Aoto H, Mitaka T, Nagura K, Ohba T, Ishino M, Takahashi S, Suzuki R, Sasaki T (Jan 1998). "Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions". The Journal of Biological Chemistry. 273 (2): 1003–14. doi:10.1074/jbc.273.2.1003. PMID 9422762.
  2. Fujimoto N, Yeh S, Kang HY, Inui S, Chang HC, Mizokami A, Chang C (Mar 1999). "Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate". The Journal of Biological Chemistry. 274 (12): 8316–21. doi:10.1074/jbc.274.12.8316. PMID 10075738.
  3. 3.0 3.1 Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, Yeh S, Wu G, Guo Y, Chang C (May 2002). "Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator". The Journal of Biological Chemistry. 277 (18): 15426–31. doi:10.1074/jbc.M111218200. PMID 11856738.
  4. He B, Minges JT, Lee LW, Wilson EM (Mar 2002). "The FXXLF motif mediates androgen receptor-specific interactions with coregulators". The Journal of Biological Chemistry. 277 (12): 10226–35. doi:10.1074/jbc.M111975200. PMID 11779876.
  5. Carneiro AM, Ingram SL, Beaulieu JM, Sweeney A, Amara SG, Thomas SM, Caron MG, Torres GE (Aug 2002). "The multiple LIM domain-containing adaptor protein Hic-5 synaptically colocalizes and interacts with the dopamine transporter". The Journal of Neuroscience. 22 (16): 7045–54. PMID 12177201.
  6. Jia Y, Ransom RF, Shibanuma M, Liu C, Welsh MJ, Smoyer WE (Oct 2001). "Identification and characterization of hic-5/ARA55 as an hsp27 binding protein". The Journal of Biological Chemistry. 276 (43): 39911–8. doi:10.1074/jbc.M103510200. PMID 11546764.
  7. 7.0 7.1 Thomas SM, Hagel M, Turner CE (Jan 1999). "Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin". Journal of Cell Science. 112 (2): 181–90. PMID 9858471.
  8. Nishiya N, Tachibana K, Shibanuma M, Mashimo JI, Nose K (Aug 2001). "Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase". Molecular and Cellular Biology. 21 (16): 5332–45. doi:10.1128/MCB.21.16.5332-5345.2001. PMC 87257. PMID 11463817.
  9. Nishiya N, Iwabuchi Y, Shibanuma M, Côté JF, Tremblay ML, Nose K (Apr 1999). "Hic-5, a paxillin homologue, binds to the protein-tyrosine phosphatase PEST (PTP-PEST) through its LIM 3 domain". The Journal of Biological Chemistry. 274 (14): 9847–53. doi:10.1074/jbc.274.14.9847. PMID 10092676.
  10. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  11. 11.0 11.1 "International Mouse Phenotyping Consortium".
  12. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  13. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  14. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  15. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  16. 16.0 16.1 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.