NT5C: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
'''5', 3'-nucleotidase, cytosolic''', also known as 5'(3')-deoxyribonucleotidase, cytosolic type (cdN) or deoxy-5'-nucleotidase 1 (dNT-1), is an [[enzyme]] that in humans is encoded by the ''NT5C'' [[gene]] on chromosome 17.<ref name="pmid10899995">{{cite journal |vauthors=Rampazzo C, Gallinaro L, Milanesi E, Frigimelica E, Reichard P, Bianchi V | title = A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease | journal = Proc Natl Acad Sci U S A | volume = 97 | issue = 15 | pages = 8239–44 |date=Aug 2000 | pmid = 10899995 | pmc = 26931 | doi =10.1073/pnas.97.15.8239 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: NT5C 5', 3'-nucleotidase, cytosolic| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=30833| accessdate = }}</ref><ref name="uniprot">{{cite web | title = UniProtKB: Q8TCD5 (NT5C_HUMAN)| url = http://www.uniprot.org/uniprot/Q8TCD5| accessdate = }}</ref>
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = 5', 3'-nucleotidase, cytosolic
| HGNCid = 17144
| Symbol = NT5C
| AltSymbols =; DNT; DNT1; P5N2; PN-I; PN-II; UMPH2; cdN; dNT-1
| OMIM = 191720
| ECnumber = 
| Homologene = 8745
| MGIid = 1354954
| GeneAtlas_image1 = PBB_GE_NT5C_219214_s_at_tn.png
| Function = {{GNF_GO|id=GO:0000287 |text = magnesium ion binding}} {{GNF_GO|id=GO:0008253 |text = 5'-nucleotidase activity}} {{GNF_GO|id=GO:0016787 |text = hydrolase activity}} {{GNF_GO|id=GO:0019103 |text = pyrimidine nucleotide binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}}
| Process = {{GNF_GO|id=GO:0009117 |text = nucleotide metabolic process}} {{GNF_GO|id=GO:0009223 |text = pyrimidine deoxyribonucleotide catabolic process}} {{GNF_GO|id=GO:0016311 |text = dephosphorylation}}
  | Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 30833
    | Hs_Ensembl = ENSG00000125458
    | Hs_RefseqProtein = NP_055410
    | Hs_RefseqmRNA = NM_014595
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 17
    | Hs_GenLoc_start = 70637919
    | Hs_GenLoc_end = 70639472
    | Hs_Uniprot = Q8TCD5
    | Mm_EntrezGene = 50773
    | Mm_Ensembl = ENSMUSG00000020736
    | Mm_RefseqmRNA = NM_015807
    | Mm_RefseqProtein = NP_056622
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 11
    | Mm_GenLoc_start = 115306518
    | Mm_GenLoc_end = 115307943
    | Mm_Uniprot = Q9JM14
  }}
}}
'''5', 3'-nucleotidase, cytosolic''', also known as '''NT5C''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: NT5C 5', 3'-nucleotidase, cytosolic| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=30833| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB Summary
| section_title =  
| section_title =  
| summary_text = Pyrimidine 5-prime nucleotidase (P5N; EC 3.1.3.5), also called uridine 5-prime monophosphate hydrolase (UMPH), catalyzes the dephosphorylation of the pyrimidine 5-prime monophosphates UMP and CMP to the corresponding nucleosides. There are 2 isozymes of pyrimidine 5-prime nucleotidase in red blood cells, referred to as type I (UMPH1; MIM 606224) and type II (UMPH2).[supplied by OMIM]<ref name="entrez">{{cite web | title = Entrez Gene: NT5C 5', 3'-nucleotidase, cytosolic| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=30833| accessdate = }}</ref>
| summary_text = This gene encodes a [[nucleotidase]] that [[catalyze]]s the de[[phosphorylation]] of the 5' [[deoxyribonucleotide]]s (dNTP) and 2'(3')-dNTP and [[ribonucleotide]]s, but not 5' ribonucleotides. Of the different forms of nucleotidases characterized, this [[enzyme]] is unique in its preference for 5'-dNTP. It may be one of the enzymes involved in regulating the size of dNTP pools in cells. [[Alternatively spliced]] transcript variants have been found for this gene. [provided by RefSeq, Nov 2011]<ref name="entrez" />
}}
}}


==References==
==Structure==
{{reflist|2}}
 
cdN is one of seven 5' nucleotidases identified in humans, all of which differ in tissue specificity, subcellular location, [[primary structure]] and [[substrate (biochemistry)|substrate]] specificity.<ref name=pmid12352955>{{cite journal|last1=Rinaldo-Matthis|first1=A|last2=Rampazzo|first2=C|last3=Reichard|first3=P|last4=Bianchi|first4=V|last5=Nordlund|first5=P|title=Crystal structure of a human mitochondrial deoxyribonucleotidase.|journal=Nature Structural Biology|date=October 2002|volume=9|issue=10|pages=779–87|pmid=12352955|doi=10.1038/nsb846}}</ref><ref name=pmid17985935>{{cite journal|last1=Walldén|first1=K|last2=Rinaldo-Matthis|first2=A|last3=Ruzzenente|first3=B|last4=Rampazzo|first4=C|last5=Bianchi|first5=V|last6=Nordlund|first6=P|title=Crystal structures of human and murine deoxyribonucleotidases: insights into recognition of substrates and nucleotide analogues.|journal=Biochemistry|date=4 December 2007|volume=46|issue=48|pages=13809–18|pmid=17985935|doi=10.1021/bi7014794}}</ref> Of the seven, the [[mitochondria]]l counterpart of cdN, [[NT5M|mdN]], is the most closely related to cdN. Their genes, ''NT5M'' and ''NT5C'', share the same [[exon]]/[[intron]] organization, and their [[amino acid]] sequences are 52% identical.<ref name=pmid10899995/><ref name=pmid12352955/><ref name=pmid17985935/> Both cdN and mdN share nearly identical catalytic phosphate binding sites with most members of the haloacid [[dehalogenase]] (HAD) superfamily.<ref name=pmid17985935/>
 
This enzyme forms a 45-kDa homodimer of two 22-kDa subunits composed of a core domain and cap domain.<ref name=pmid17985935/><ref name=pmid2157703>{{cite journal|last1=Höglund|first1=L|last2=Reichard|first2=P|title=Cytoplasmic 5'(3')-nucleotidase from human placenta.|journal=The Journal of Biological Chemistry|date=25 April 1990|volume=265|issue=12|pages=6589–95|pmid=2157703}}</ref> The core domain is an α/β [[Rossmann fold|Rossmann-like fold]] containing six [[antiparallel (biochemistry)|antiparallel]] [[β-strand]]s surrounded by [[α-helix]]es, and it spans [[amino acid|residue]]s 1-17 and 77-201 of the [[amino acid]] sequence. The cap domain is a 4-helix bundle spanning residues 18-76. The cleft formed by the core and cap domains acts as the enzyme’s [[active site]], where three conserved motifs in the core domain plus the [[cofactor (biochemistry)|cofactor]] [[Mg2+]] serve as the [[substrate (biochemistry)|substrate]] binding site. Meanwhile, the residues Phe18, Phe44, Leu45, and Tyr65 in the cap domain form an [[aromatic]], [[hydrophobic]] pocket that coordinates with the base of the nucleotide substrate and, thus, influences the enzyme’s [[substrate specificity]]. Its two main chain amides form [[hydrogen bond]]s with the 4-[[carbonyl]] group of [[dUMP]] and [[dTMP]] and with the 6-carbonyl group of [[Deoxyguanosine monophosphate|dGMP]] and [[Deoxyinosine monophosphate|dIMP]], while repelling the 4-[[amino]] group of [[deoxycytidine monophosphate|dCMP]] and [[deoxyadenosine monophosphate|dAMP]]. The residue Asp43 is responsible for donating a [[proton]] to O5’ of the nucleotide during catalysis.<ref name=pmid17985935/>
 
==Function==
This enzyme functions in dephosphorylating nucleoside triphosphates, especially the 5′- and 2′(3′)-phosphates of uracil and thymine, as well as inosine and guanine, dNTPs (dUMPs, dTMPs, dIMPs, and dGMPs, respectively).<ref name=pmid10899995/><ref name=pmid12352955/><ref name=pmid17985935/><ref name=pmid12124385>{{cite journal|last1=Gallinaro|first1=L|last2=Crovatto|first2=K|last3=Rampazzo|first3=C|last4=Pontarin|first4=G|last5=Ferraro|first5=P|last6=Milanesi|first6=E|last7=Reichard|first7=P|last8=Bianchi|first8=V|title=Human mitochondrial 5'-deoxyribonucleotidase. Overproduction in cultured cells and functional aspects.|journal=The Journal of Biological Chemistry|date=20 September 2002|volume=277|issue=38|pages=35080–7|pmid=12124385|doi=10.1074/jbc.m203755200}}</ref> Due to this function, cdN regulates the size of dNTP pools in cells, in conjunction with the [[cytosolic]] [[thymidine]] [[kinase]]s, as part of the dNTP substrate cycle.<ref name=pmid17985935/><ref name=pmid2157703/><ref name=pmid12124385/><ref name=pmid10681516>{{cite journal|last1=Rampazzo|first1=C|last2=Johansson|first2=M|last3=Gallinaro|first3=L|last4=Ferraro|first4=P|last5=Hellman|first5=U|last6=Karlsson|first6=A|last7=Reichard|first7=P|last8=Bianchi|first8=V|title=Mammalian 5'(3')-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells.|journal=The Journal of Biological Chemistry|date=25 February 2000|volume=275|issue=8|pages=5409–15|pmid=10681516|doi=10.1074/jbc.275.8.5409}}</ref>
 
The enzyme is ubiquitously expressed, though [[lymphoid]] cells display particularly high cdN activity.<ref name=pmid10681516/>
 
==Clinical Significance==
The protein cdN is essential to counteract accumulation of cellular dNTPs, as excess dNTPs have been linked to [[genetic disease]].<ref name=pmid2157703/> In addition, this enzyme's dephosphorylation function could be applied to [[anticancer]] and [[antiviral]] treatments which use [[nucleoside]] [[Substrate analog|analog]]s. These treatments rely on the [[kinase]] activation of the analogs, which then are incorporated into the DNA of the [[tumor]] cell or [[virus]] to act as DNA chain terminators.<ref name=pmid10681516/><ref name=pmid16004879>{{cite journal|last1=Walldén|first1=K|last2=Ruzzenente|first2=B|last3=Rinaldo-Matthis|first3=A|last4=Bianchi|first4=V|last5=Nordlund|first5=P|title=Structural basis for substrate specificity of the human mitochondrial deoxyribonucleotidase.|journal=Structure|date=July 2005|volume=13|issue=7|pages=1081–8|pmid=16004879|doi=10.1016/j.str.2005.04.023}}</ref> cdN can be used to maintain the concentrations of nucleoside analogs at low levels to avoid [[cytotoxicity]].<ref name=pmid10681516/>
 
Moreover, cdN may affect the sensitivity of [[acute myeloid leukemia]] (AML) patients to treatment with [[ara-C]]. as low cdN mRNA levels in [[leukemic]] [[blast cell|blasts]] have been correlated with a worse clinical outcome.<ref>{{cite journal|last1=Galmarini|first1=CM|last2=Cros|first2=E|last3=Graham|first3=K|last4=Thomas|first4=X|last5=Mackey|first5=JR|last6=Dumontet|first6=C|title=5'-(3')-nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine.|journal=Haematologica|date=May 2004|volume=89|issue=5|pages=617–9|pmid=15136231}}</ref>
 
==Interactions==
cdN binds and dephosphorylates deoxyribonucleotides such as uracil, thymine, inosine, and guanine.<ref name=pmid17985935/>
 
== See also ==
*[[NT5M]]
 
== References ==
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Höglund L, Reichard P |title=Cytoplasmic 5'(3')-nucleotidase from human placenta. |journal=J. Biol. Chem. |volume=265 |issue= 12 |pages= 6589-95 |year= 1990 |pmid= 2157703 |doi=  }}
*{{cite journal  |vauthors=Höglund L, Reichard P |title=Cytoplasmic 5'(3')-nucleotidase from human placenta |journal=J. Biol. Chem. |volume=265 |issue= 12 |pages= 6589–95 |year= 1990 |pmid= 2157703 |doi=  }}
*{{cite journal  | author=Wilson DE, Swallow DM, Povey S |title=Assignment of the human gene for uridine 5'-monophosphate phosphohydrolase (UMPH2) to the long arm of chromosome 17. |journal=Ann. Hum. Genet. |volume=50 |issue= Pt 3 |pages= 223-7 |year= 1988 |pmid= 2833155 |doi=  }}
*{{cite journal  |vauthors=Wilson DE, Swallow DM, Povey S |title=Assignment of the human gene for uridine 5'-monophosphate phosphohydrolase (UMPH2) to the long arm of chromosome 17 |journal=Ann. Hum. Genet. |volume=50 |issue= Pt 3 |pages= 223–7 |year= 1988 |pmid= 2833155 |doi=10.1111/j.1469-1809.1986.tb01042.x }}
*{{cite journal | author=Xu WM, Gorman PA, Rider SH, ''et al.'' |title=Construction of a genetic map of human chromosome 17 by use of chromosome-mediated gene transfer. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 22 |pages= 8563-7 |year= 1988 |pmid= 3186746 |doi=  }}
*{{cite journal   |vauthors=Xu WM, Gorman PA, Rider SH, etal |title=Construction of a genetic map of human chromosome 17 by use of chromosome-mediated gene transfer |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=85 |issue= 22 |pages= 8563–7 |year= 1988 |pmid= 3186746 |doi=10.1073/pnas.85.22.8563  | pmc=282499 }}
*{{cite journal | author=Rampazzo C, Johansson M, Gallinaro L, ''et al.'' |title=Mammalian 5'(3')-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells. |journal=J. Biol. Chem. |volume=275 |issue= 8 |pages= 5409-15 |year= 2000 |pmid= 10681516 |doi= }}
*{{cite journal   |vauthors=Rampazzo C, Johansson M, Gallinaro L, etal |title=Mammalian 5'(3')-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells |journal=J. Biol. Chem. |volume=275 |issue= 8 |pages= 5409–15 |year= 2000 |pmid= 10681516 |doi=10.1074/jbc.275.8.5409 }}
*{{cite journal  | author=Rampazzo C, Gallinaro L, Milanesi E, ''et al.'' |title=A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 15 |pages= 8239-44 |year= 2000 |pmid= 10899995 |doi= }}
*{{cite journal   |vauthors=Rampazzo C, Kost-Alimova M, Ruzzenente B, etal |title=Mouse cytosolic and mitochondrial deoxyribonucleotidases: cDNA cloning of the mitochondrial enzyme, gene structures, chromosomal mapping and comparison with the human orthologs |journal=Gene |volume=294 |issue= 1–2 |pages= 109–17 |year= 2003 |pmid= 12234672 |doi=10.1016/S0378-1119(02)00651-0 }}
*{{cite journal | author=Rampazzo C, Kost-Alimova M, Ruzzenente B, ''et al.'' |title=Mouse cytosolic and mitochondrial deoxyribonucleotidases: cDNA cloning of the mitochondrial enzyme, gene structures, chromosomal mapping and comparison with the human orthologs. |journal=Gene |volume=294 |issue= 1-2 |pages= 109-17 |year= 2003 |pmid= 12234672 |doi=  }}
*{{cite journal   |vauthors=Amici A, Emanuelli M, Ruggieri S, etal |title=Kinetic evidence for covalent phosphoryl-enzyme intermediate in phosphotransferase activity of human red cell pyrimidine nucleotidases |journal=Meth. Enzymol. |volume=354 |issue=  |pages= 149–59 |year= 2003 |pmid= 12418222 |doi=10.1016/S0076-6879(02)54011-8  | chapter=Kinetic evidence for covalent phosphoryl-enzyme intermediate in phosphotransferase activity of human red cell pyrimidine nucleotidases  | series=Methods in Enzymology  | isbn=978-0-12-182257-6 }}
*{{cite journal | author=Amici A, Emanuelli M, Ruggieri S, ''et al.'' |title=Kinetic evidence for covalent phosphoryl-enzyme intermediate in phosphotransferase activity of human red cell pyrimidine nucleotidases. |journal=Meth. Enzymol. |volume=354 |issue=  |pages= 149-59 |year= 2003 |pmid= 12418222 |doi=  }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Balta G, Gumruk F, Akarsu N, etal |title=Molecular characterization of Turkish patients with pyrimidine 5' nucleotidase-I deficiency |journal=Blood |volume=102 |issue= 5 |pages= 1900–3 |year= 2003 |pmid= 12714505 |doi= 10.1182/blood-2003-02-0628 }}
*{{cite journal | author=Balta G, Gumruk F, Akarsu N, ''et al.'' |title=Molecular characterization of Turkish patients with pyrimidine 5' nucleotidase-I deficiency. |journal=Blood |volume=102 |issue= 5 |pages= 1900-3 |year= 2003 |pmid= 12714505 |doi= 10.1182/blood-2003-02-0628 }}
*{{cite journal   |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal   |vauthors=Galmarini CM, Cros E, Graham K, etal |title=5'-(3')-nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine |journal=Haematologica |volume=89 |issue= 5 |pages= 617–9 |year= 2006 |pmid= 15136231 |doi=  }}
*{{cite journal | author=Galmarini CM, Cros E, Graham K, ''et al.'' |title=5'-(3')-nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine. |journal=Haematologica |volume=89 |issue= 5 |pages= 617-9 |year= 2006 |pmid= 15136231 |doi=  }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}

Revision as of 13:17, 5 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

5', 3'-nucleotidase, cytosolic, also known as 5'(3')-deoxyribonucleotidase, cytosolic type (cdN) or deoxy-5'-nucleotidase 1 (dNT-1), is an enzyme that in humans is encoded by the NT5C gene on chromosome 17.[1][2][3]

This gene encodes a nucleotidase that catalyzes the dephosphorylation of the 5' deoxyribonucleotides (dNTP) and 2'(3')-dNTP and ribonucleotides, but not 5' ribonucleotides. Of the different forms of nucleotidases characterized, this enzyme is unique in its preference for 5'-dNTP. It may be one of the enzymes involved in regulating the size of dNTP pools in cells. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Nov 2011][2]

Structure

cdN is one of seven 5' nucleotidases identified in humans, all of which differ in tissue specificity, subcellular location, primary structure and substrate specificity.[4][5] Of the seven, the mitochondrial counterpart of cdN, mdN, is the most closely related to cdN. Their genes, NT5M and NT5C, share the same exon/intron organization, and their amino acid sequences are 52% identical.[1][4][5] Both cdN and mdN share nearly identical catalytic phosphate binding sites with most members of the haloacid dehalogenase (HAD) superfamily.[5]

This enzyme forms a 45-kDa homodimer of two 22-kDa subunits composed of a core domain and cap domain.[5][6] The core domain is an α/β Rossmann-like fold containing six antiparallel β-strands surrounded by α-helixes, and it spans residues 1-17 and 77-201 of the amino acid sequence. The cap domain is a 4-helix bundle spanning residues 18-76. The cleft formed by the core and cap domains acts as the enzyme’s active site, where three conserved motifs in the core domain plus the cofactor Mg2+ serve as the substrate binding site. Meanwhile, the residues Phe18, Phe44, Leu45, and Tyr65 in the cap domain form an aromatic, hydrophobic pocket that coordinates with the base of the nucleotide substrate and, thus, influences the enzyme’s substrate specificity. Its two main chain amides form hydrogen bonds with the 4-carbonyl group of dUMP and dTMP and with the 6-carbonyl group of dGMP and dIMP, while repelling the 4-amino group of dCMP and dAMP. The residue Asp43 is responsible for donating a proton to O5’ of the nucleotide during catalysis.[5]

Function

This enzyme functions in dephosphorylating nucleoside triphosphates, especially the 5′- and 2′(3′)-phosphates of uracil and thymine, as well as inosine and guanine, dNTPs (dUMPs, dTMPs, dIMPs, and dGMPs, respectively).[1][4][5][7] Due to this function, cdN regulates the size of dNTP pools in cells, in conjunction with the cytosolic thymidine kinases, as part of the dNTP substrate cycle.[5][6][7][8]

The enzyme is ubiquitously expressed, though lymphoid cells display particularly high cdN activity.[8]

Clinical Significance

The protein cdN is essential to counteract accumulation of cellular dNTPs, as excess dNTPs have been linked to genetic disease.[6] In addition, this enzyme's dephosphorylation function could be applied to anticancer and antiviral treatments which use nucleoside analogs. These treatments rely on the kinase activation of the analogs, which then are incorporated into the DNA of the tumor cell or virus to act as DNA chain terminators.[8][9] cdN can be used to maintain the concentrations of nucleoside analogs at low levels to avoid cytotoxicity.[8]

Moreover, cdN may affect the sensitivity of acute myeloid leukemia (AML) patients to treatment with ara-C. as low cdN mRNA levels in leukemic blasts have been correlated with a worse clinical outcome.[10]

Interactions

cdN binds and dephosphorylates deoxyribonucleotides such as uracil, thymine, inosine, and guanine.[5]

See also

References

  1. 1.0 1.1 1.2 Rampazzo C, Gallinaro L, Milanesi E, Frigimelica E, Reichard P, Bianchi V (Aug 2000). "A deoxyribonucleotidase in mitochondria: involvement in regulation of dNTP pools and possible link to genetic disease". Proc Natl Acad Sci U S A. 97 (15): 8239–44. doi:10.1073/pnas.97.15.8239. PMC 26931. PMID 10899995.
  2. 2.0 2.1 "Entrez Gene: NT5C 5', 3'-nucleotidase, cytosolic".
  3. "UniProtKB: Q8TCD5 (NT5C_HUMAN)".
  4. 4.0 4.1 4.2 Rinaldo-Matthis, A; Rampazzo, C; Reichard, P; Bianchi, V; Nordlund, P (October 2002). "Crystal structure of a human mitochondrial deoxyribonucleotidase". Nature Structural Biology. 9 (10): 779–87. doi:10.1038/nsb846. PMID 12352955.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Walldén, K; Rinaldo-Matthis, A; Ruzzenente, B; Rampazzo, C; Bianchi, V; Nordlund, P (4 December 2007). "Crystal structures of human and murine deoxyribonucleotidases: insights into recognition of substrates and nucleotide analogues". Biochemistry. 46 (48): 13809–18. doi:10.1021/bi7014794. PMID 17985935.
  6. 6.0 6.1 6.2 Höglund, L; Reichard, P (25 April 1990). "Cytoplasmic 5'(3')-nucleotidase from human placenta". The Journal of Biological Chemistry. 265 (12): 6589–95. PMID 2157703.
  7. 7.0 7.1 Gallinaro, L; Crovatto, K; Rampazzo, C; Pontarin, G; Ferraro, P; Milanesi, E; Reichard, P; Bianchi, V (20 September 2002). "Human mitochondrial 5'-deoxyribonucleotidase. Overproduction in cultured cells and functional aspects". The Journal of Biological Chemistry. 277 (38): 35080–7. doi:10.1074/jbc.m203755200. PMID 12124385.
  8. 8.0 8.1 8.2 8.3 Rampazzo, C; Johansson, M; Gallinaro, L; Ferraro, P; Hellman, U; Karlsson, A; Reichard, P; Bianchi, V (25 February 2000). "Mammalian 5'(3')-deoxyribonucleotidase, cDNA cloning, and overexpression of the enzyme in Escherichia coli and mammalian cells". The Journal of Biological Chemistry. 275 (8): 5409–15. doi:10.1074/jbc.275.8.5409. PMID 10681516.
  9. Walldén, K; Ruzzenente, B; Rinaldo-Matthis, A; Bianchi, V; Nordlund, P (July 2005). "Structural basis for substrate specificity of the human mitochondrial deoxyribonucleotidase". Structure. 13 (7): 1081–8. doi:10.1016/j.str.2005.04.023. PMID 16004879.
  10. Galmarini, CM; Cros, E; Graham, K; Thomas, X; Mackey, JR; Dumontet, C (May 2004). "5'-(3')-nucleotidase mRNA levels in blast cells are a prognostic factor in acute myeloid leukemia patients treated with cytarabine". Haematologica. 89 (5): 617–9. PMID 15136231.

Further reading