Myeloproliferative neoplasm medical therapy: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 330: Line 330:
| style="padding: 5px 5px; background: #DCDCDC;font-weight: bold" |
| style="padding: 5px 5px; background: #DCDCDC;font-weight: bold" |
Midostaurin
Midostaurin
| style="padding: 5px 5px; background: #F5F5F5;" |
Immunomodulatory agent; anti-angiogenic agent
| style="padding: 5px 5px; background: #F5F5F5;" |
| style="padding: 5px 5px; background: #F5F5F5;" |
Tyrosine kinase inhibitor that inhibits wild-type ''c-kit'' and mutant ''c-kit'' ''D816V''
Tyrosine kinase inhibitor that inhibits wild-type ''c-kit'' and mutant ''c-kit'' ''D816V''

Revision as of 22:48, 23 June 2018

Myeloproliferative Neoplasm Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating myeloproliferative neoplasm from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications, and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Myeloproliferative neoplasm medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Myeloproliferative neoplasm medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Myeloproliferative neoplasm medical therapy

on Myeloproliferative neoplasm medical therapy

Myeloproliferative neoplasm medical therapy in the news

Blogs on Myeloproliferative neoplasm medical therapy

Directions to Hospitals Treating Myeloproliferative neoplasm

Risk calculators and risk factors for Myeloproliferative neoplasm medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Mohamad Alkateb, MBBCh [2] Shyam Patel [3]

Overview

The mainstay of therapy for myeloproliferative neoplasm is chemotherapy, aspirin, and palliative care. Treatment is directed at reducing the excessive numbers of blood cells.[1]

Medical Therapy

Medical therapy for myeloproliferative neoplasm is based on the specific subtype of myeloproliferative neoplasm.

Polycythemia vera

Therapy Mechanism of Action Dosing Adverse Effects

Aspirin

Irreversibly inhibits cyclooxygenase-1 and -2 (COX-1 and COX-2)

81mg PO daily

Mucosal bleeding Gastrointestinal bleeding

Hydroxyurea

Inhibits ribonucleotide reductase

20mg/kg PO daily

Anemia, thrombocytopenia, ulcerations, secondary cancers

Ruxolitinib

Inhibits JAK2 (tyrosine kinase inhibitor)

10mg PO twice daily

Weight gain, zoster, non-melanoma skin cancers, cytopenias

Phlebotomy

Mechanically removes red blood cells from circulation

  • Induction: 450cc blood removal daily until hematocrit < 45%
  • Maintenance: One session every 2 months, with goal hematocrit < 45%

Iron deficiency anemia, fatigue, vasovagal episodes, pain at phlebotomy site

Essential thrombocythemia

Treatment of essential thrombocythemia is based on risk assessment and prognostication:

Prognostic Group Defining Features Therapy

Very low risk[2]

  • No history of thrombosis
  • Age < 60
  • JAK2 or MPL wild-type
  • Observation

or

  • Aspirin once daily

Low risk[2]

  • No history of thrombosis
  • Age < 60
  • JAK2 or MPL mutation present
  • Aspirin once daily

or

  • Aspirin twice daily

Intermediate risk[2]

  • No history of thrombosis
  • Age > 60
  • JAK2 or MPL wild-type
  • Aspirin once daily plus hydroxyurea

High risk[2]

  • History of thrombosis, or
  • Age > 60 with JAK2 or MPL mutation present
  • Aspirin twice daily plus hydroxyurea

or

  • Hydroxyurea, plus systemic anticoagulation


Therapy Mechanism of Action Dosing Adverse Effects

Anagrelide

  • Inhibits phosphodiesterase 3 (PDE-3)
  • Inhibits release of arachidonic acid from phospholipase A2
  • Disrupts maturation of megakaryocytes

0.5mg PO every 6 hours or 1mg every 12 hours

Headache, palpitations, diarrhea, edema, nausea

Hydroxyurea

Inhibits ribonucleotide reductase

20mg/kg PO daily

Anemia, thrombocytopenia, ulcerations, secondary cancers

Aspirin

Irreversibly inhibits cyclooxygenase-1 and -2 (COX-1 and COX-2)

81mg PO twice daily

Mucosal bleeding Gastrointestinal bleeding

Ruxolitinib

Inhibits JAK2 (tyrosine kinase inhibitor)

10mg PO twice daily

Weight gain, zoster, non-melanoma skin cancers, cytopenias

Plateletpheresis

Mechanically removes platelets from circulation

Daily until platelet count returns to normal range

Hypotension, thrombocytopenia

Pegylated interferon alpha 2a

Immunomodulatory agent; anti-angiogenic agent

45mcg/week

Hypotension, infusion reaction

Primary myelofibrosis

Therapy Mechanism of Action Dosing Adverse Effects

Hydroxyurea

Inhibits ribonucleotide reductase

20mg/kg PO daily

Anemia, thrombocytopenia, ulcerations, secondary cancers

Ruxolitinib

Inhibits JAK2 (tyrosine kinase inhibitor)

10mg PO twice daily

Weight gain, zoster, non-melanoma skin cancers, cytopenias

Radiation therapy

Unknown mechanism

0.5 Gy to spleen 5 days weekly

Fatigue, secondary cancers, nausea, cytopenias

Chronic myeloid leukemia

Therapy Mechanism of Action Dosing Adverse Effects

Imatinib

Inhibits BCR-ABL tyrosine kinase

400mg PO daily

Edema, periorbital swelling, nausea, anasarca

Dasatinib

Inhibits BCR-ABL tyrosine kinase

100mg PO daily

Pleural effusions, edema, periorbital swelling, facial edema

Nilotinib

Inhibits BCR-ABL tyrosine kinase

400mg PO twice daily

Occlusive arterial disease, peripheral vascular disease, cytopenias, nausea

Bosutinib

Inhibits BCR-ABL tyrosine kinase

400mg PO daily

Edema, chest pain, fatigue, diarrhea

Ponatinib

Inhibits BCR-ABL tyrosine kinase

45mg PO daily

Hypertension, arterial ischemia, fatigue, constipation

Omacetaxine

Inhibits protein synthesis

  • Induction: 1.25mg/m2 subQ twice daily for 14 days of a 28-day cycle
  • Maintenance: 1.25mg/m2 subQ twice daily for 7 days of a 28-day cycle

Peripheral edema, fatigue, nausea, thrombocytopenia

Chronic neutrophilic leukemia

Therapy Mechanism of Action Dosing Adverse Effects

Hydroxyurea

Inhibits ribonucleotide reductase

20mg/kg PO daily

Anemia, thrombocytopenia, ulcerations, secondary cancers

Pegylated interferon alpha 2a

Immunomodulatory agent; anti-angiogenic agent

45mcg/week

Hypotension, infusion reaction

Systemic mastocytosis

Therapy Mechanism of Action Dosing Adverse Effects

Imatinib

Tyrosine kinase inhibitor that inhibits wild-type c-kit; not effective for c-kit D816V mutation

400mg PO daily

Edema, periorbital swelling, nausea, anasarca

Midostaurin

Tyrosine kinase inhibitor that inhibits wild-type c-kit and mutant c-kit D816V

10mg PO twice daily

Nausea, hypocalcemia, mucositis, headache, epistaxis, hypernatremia

References

  1. National Cancer Institute. Physician Data Query Database 2015.http://www.cancer.gov/types/leukemia/hp/cml-treatment-pdq#section/_19
  2. 2.0 2.1 2.2 2.3 Tefferi A, Vannucchi AM, Barbui T (2018). "Essential thrombocythemia treatment algorithm 2018". Blood Cancer J. 8 (1): 2. doi:10.1038/s41408-017-0041-8. PMC 5802626. PMID 29321520.

Template:WH Template:WS