Metabolic syndrome pathophysiology

Revision as of 21:44, 16 October 2017 by Aditya Ganti (talk | contribs) (→‎Pathophysiology)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Metabolic syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Metabolic Syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Dietary Therapy

Physical Activity

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Tertiary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Metabolic syndrome pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Metabolic syndrome pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Metabolic syndrome pathophysiology

CDC on Metabolic syndrome pathophysiology

Metabolic syndrome pathophysiology in the news

Blogs on Metabolic syndrome pathophysiology

Directions to Hospitals Treating Metabolic syndrome

Risk calculators and risk factors for Metabolic syndrome pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Priyamvada Singh, M.B.B.S. [2]; Raviteja Guddeti, M.B.B.S. [3]; Aarti Narayan, M.B.B.S [4]

Overview

Metabolic syndrome is characterized by a cluster of conditions that greatly increase the risk of developing cardiovascular diseases, diabetes and stroke. By definition one is said to have a metabolic syndrome if they have 3 of the following 5 conditions: high blood pressure (>130/85), abnormal fasting blood glucose > 100 mg/dl, increased weight around the waist (women > 35 inches, male > 40 inches), triglycerides > 150 mg/dl and a low HDL (female < 50, male < 40).

Pathophysiology

The pathophysiology of metabolic syndrome is extremely complex and has only been partially elucidated. Most patients are older, obese, sedentary, and have a degree of insulin resistance. Metabolic syndrome can be defined as a chronic state of low-grade inflammation.[1] Numerous factors which are believed to play a key role in the pathogenesis of metabolic syndrome includes:

 
 
 
 
 
 
 
 
 
 
 
Physical inactivity
Smoking
Energy dense food
Stress
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Positive energy balance resulting in
Adipose tissue hyperplasia and hypertrophy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Altered FFA metabolism
 
 
 
 
 
 
 
 
 
 
 
Altered release of adipokines
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
↑ Portal FFA
 
 
 
 
 
Insulin resistance hyperinsulinemia
 
 
 
↑Leptin
↑AT-II
↑Aldosterone
 
 
 
 
 
↑ Factor VII
↑ Factor V
↑ PAI-I
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
↑ Lipoprotein synthesis
↑ Gluconeogenesis
 
 
 
 
 
Impairs 𝛽-cell function
of pancreas
 
 
 
Activate RAAS and SNS
 
 
 
 
 
Oxidative stress
endothelial dysfunction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dyslipidemia
 
 
 
 
 
Hyperglycemia
 
 
 
↑ Sodium reabsorption
Vasoconstriction
 
 
 
 
 
Proinflammatory state
prothrombotic state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypertension
 
 
 
 
 
Hypercoagulable state
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Metabolic syndrome
WC,TCG,HDL
Blood pressure, Fasting blood glucose
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Atherosclerotic CVD
 
 
 
 
 
 
Diabetes Mellitus
 
 
 
 
 
 
 
 

Insulin Resistance

Adipose tissue

Inflammatory mediators Productionction
Free Fatty Acids

(FFA)

Produced by upper body subcutaneous adipocytes.
Tumor necrosis factor alpha

(TNF-𝛼)

Interleukin-6 (IL-6)
CRP
Adiponectin
Leptin

Oxidative Stress

Defects in the mitochondrial oxidative phosphorylation lead to an accumulation of TGs and lipid molecules in the muscles have been identified in elderly patients with type II diabetes or obesity. Accumulation of these lipids in the muscles is associated with insulin resistance. Some have pointed to oxidative stress due to a variety of causes including dietary fructose mediated increased uric acid levels.[4][5][6]

Dyslipidemia

Hypertension

Insulin is a vasodilator under normal physiologic conditions with secondary effects on sodium reabsorption. In hyperinsulinemia and insulin resistance this vasodilatory effect of insulin is lost but the sodium reabsorption effect on the kidney is preserved. In caucasians this reabsorptive effect is increased in metabolic syndrome. Insulin also increases sympathetic nervous system activity and this effect is preserved in insulin resistance. Impairment of phosphatidylinositol-3-kinase signaling pathway causes imbalance between the production of NO and endothelin-1 resulting in reduced blood flow. [9]

Glucose Intolerance

Due to defects in insulin, Glucose intolerance leads to increased production of insulin to maintain normal glucose levels. When this compensatory mechanism fails, the result is progression from glucose intolerance to diabetes.

Associated Conditions

References

  1. Cornier MA, Dabelea D, Hernandez TL; et al. (2008). "The metabolic syndrome". Endocrine Reviews. 29 (7): 777–822. doi:10.1210/er.2008-0024. PMID 18971485. Unknown parameter |month= ignored (help)
  2. Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E; et al. (2008). "Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk". Arterioscler Thromb Vasc Biol. 28 (6): 1039–49. doi:10.1161/ATVBAHA.107.159228. PMID 18356555.
  3. Fukuchi S, Hamaguchi K, Seike M, Himeno K, Sakata T, Yoshimatsu H. (2004). "Role of Fatty Acid Composition in the Development of Metabolic Disorders in Sucrose-Induced Obese Rats". Exp Biol Med. 229 (6): 486&ndash, 493. PMID 15169967.
  4. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006). "A causal role for uric acid in fructose-induced metabolic syndrome". Am J Phys Renal Phys. 290 (3): F625&ndash, F631. PMID 16234313.
  5. Hallfrisch J (1990). "Metabolic effects of dietary fructose". FASEB J. 4 (9): 2652&ndash, 2660. PMID 2189777.
  6. Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ (1989). "Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch". Am J Clin Nutr. 49 (5): 832&ndash, 839. PMID 2497634.
  7. Lewis GF, Steiner G (1996). "Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state". Diabetes Care. 19 (4): 390–3. PMID 8729170.
  8. Borggreve SE, De Vries R, Dullaart RP (2003). "Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins". Eur. J. Clin. Invest. 33 (12): 1051–69. PMID 14636288.
  9. Zimmet P, Boyko EJ, Collier GR, de Courten M (1999). "Etiology of the metabolic syndrome: potential role of insulin resistance, leptin resistance, and other players". Ann. N. Y. Acad. Sci. 892: 25–44. PMID 10842650.
  10. Takata H, Fujimoto S (2013). "[Metabolic syndrome]". Nihon Rinsho. Japanese Journal of Clinical Medicine (in Japanese). 71 (2): 266–9. PMID 23631204. Unknown parameter |month= ignored (help)
  11. Teede HJ, Hutchison S, Zoungas S, Meyer C (2006). "Insulin resistance, the metabolic syndrome, diabetes, and cardiovascular disease risk in women with PCOS". Endocrine. 30 (1): 45–53. doi:10.1385/ENDO:30:1:45. PMID 17185791. Unknown parameter |month= ignored (help)
  12. Cussons AJ, Stuckey BG, Watts GF (2007). "Metabolic syndrome and cardiometabolic risk in PCOS". Current Diabetes Reports. 7 (1): 66–73. PMID 17254520. Unknown parameter |month= ignored (help)
  13. Dongiovanni P, Fracanzani AL, Fargion S, Valenti L (2011). "Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target". Journal of Hepatology. 55 (4): 920–32. doi:10.1016/j.jhep.2011.05.008. PMID 21718726. Unknown parameter |month= ignored (help)
  14. Sogabe M, Okahisa T, Tsujigami K, Fukuno H, Hibino S, Yamanoi A (2013). "Visceral fat predominance is associated with nonalcoholic fatty liver disease in Japanese women with metabolic syndrome". Hepatology Research : the Official Journal of the Japan Society of Hepatology. doi:10.1111/hepr.12146. PMID 23617326. Unknown parameter |month= ignored (help)

Template:WS Template:WH