Jervell and Lange-Nielsen syndrome: Difference between revisions

Jump to navigation Jump to search
Line 54: Line 54:


* Both ''KCNQ1'' and ''KCNE1'' genes encodes for the slow potassium currents of the cochlea and the heart.
* Both ''KCNQ1'' and ''KCNE1'' genes encodes for the slow potassium currents of the cochlea and the heart.
*Normally the the slow potassium currents were stimulated by the sound


=== Pathogenesis ===
=== Pathogenesis ===

Revision as of 15:33, 13 November 2019

Jervell and Lange-Nielsen syndrome
ICD-9 426.82
OMIM 220400
DiseasesDB 7249
MeSH D029593

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Synonyms and keywords:Autosomal recessive long QT syndrome (LQTS), cardioauditory syndrome, cardioauditory syndrome of Jervell and Lange-Nielsen, deafness, congenital, and functional heart disease, Jervell and Lange-Nielsen (JLNS), surdocardiac syndrome

Overview

Jervell and Lange-Nielsen syndrome is a rare autosomal recessive condition that leads to sensorineural deafness, long QT syndrome (LQTS) and other cardiac events. Jervell and Lange-Nielsen syndrome is due to KCNQ1 or KCNE1 gene mutations. The range of symptoms and severity of symptoms in Jervell and Lange-Nielsen syndrome differs from patient to patient.

Historical Perspective

  • Jervell and Lange-Nielsen syndrome (JLNS) was first discovered by Anton Jervell a Norwegian physician and Fred Lange-Nielsen a Norwegian doctor and jazz musician, in 1957.[1]

Classification

  • Jervell and Lange-Nielsen syndrome (JLNS) may be classified according into two subtypes:[2][3][4]
Type Chromosome Locus Gene Mutation Protein Involved
Jervell and Lange-Nielsen syndrome 1 11p15​.5-p15.4 KCNQ1 Potassium voltage-gated channel subfamily KQT member 1
Jervell and Lange-Nielsen syndrome 2 21q22​.12 KCNE1 Potassium voltage-gated channel subfamily E member 1


Pathophysiology

Physiology

The normal physiology of KCNQ1 and KCNE1 genes can be understood as follows:

  • Both KCNQ1 and KCNE1 genes encodes for the slow potassium currents of the cochlea and the heart.
  • Normally the the slow potassium currents were stimulated by the sound

Pathogenesis

  • It is understood that Jervell and Lange-Nielsen syndrome (JLNS) is the result of mutations in the gene KCNQ1 and KCNE1

KCNQ1

  • KCNQ1 gene normally consists of 16 exons and have a general spanning of 400 kb.[5]
  • The normal gene product of KCNQ1 gene is potassium voltage-gated channel subfamily KQT member 1.
  • When KCNQ1 gene undergoes frameshift mutation it results in yielding truncated protein.
  • Then the truncated protein either delete or duplicate the exons of the KCNQ1 gene and results in abnormal gene product which is known to result in long QT syndrome..

Genetics

[Disease name] is transmitted in [mode of genetic transmission] pattern.

OR

Genes involved in the pathogenesis of [disease name] include:

  • [Gene1]
  • [Gene2]
  • [Gene3]

OR

The development of [disease name] is the result of multiple genetic mutations such as:

  • [Mutation 1]
  • [Mutation 2]
  • [Mutation 3]

Causes


Life-threatening Causes[edit | edit source]

  • Life-threatening causes include conditions which may result in death or permanent disability within 24 hours if left untreated. There are no life-threatening causes of disease name, however complications resulting from untreated disease name is common.
  • Life-threatening causes of [symptom/manifestation] include [cause1], [cause2], and [cause3].
  • [Cause] is a life-threatening cause of [disease].

Common Causes[edit | edit source]

Common causes of [disease name] may include:

  • [Cause1]
  • [Cause2]
  • [Cause3]

OR

  • [Disease name] is caused by an infection with [pathogen name].
  • [Pathogen name] is caused by [pathogen name].

Less Common Causes[edit | edit source]

Less common causes of [disease name] include:

  • [Cause1]
  • [Cause2]
  • [Cause3]

Genetic Causes[edit | edit source]

  • [Disease name] is caused by a mutation in the [gene name] gene.

Differentiating Xyz from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Treatment

Template:WikiDoc Sources

References

  1. Tranebjaerg L, Bathen J, Tyson J, Bitner-Glindzicz M (1999). "Jervell and Lange-Nielsen syndrome: a Norwegian perspective". Am J Med Genet. 89 (3): 137–46. PMID 10704188.
  2. Tyson J, Tranebjaerg L, McEntagart M, Larsen LA, Christiansen M, Whiteford ML; et al. (2000). "Mutational spectrum in the cardioauditory syndrome of Jervell and Lange-Nielsen". Hum Genet. 107 (5): 499–503. doi:10.1007/s004390000402. PMID 11140949.
  3. Schwartz PJ, Spazzolini C, Crotti L, Bathen J, Amlie JP, Timothy K; et al. (2006). "The Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome". Circulation. 113 (6): 783–90. doi:10.1161/CIRCULATIONAHA.105.592899. PMID 16461811.
  4. Tranebjaerg L, Bathen J, Tyson J, Bitner-Glindzicz M (1999). "Jervell and Lange-Nielsen syndrome: a Norwegian perspective". Am J Med Genet. 89 (3): 137–46. PMID 10704188.
  5. Wang Z, Li H, Moss AJ, Robinson J, Zareba W, Knilans T; et al. (2002). "Compound heterozygous mutations in KvLQT1 cause Jervell and Lange-Nielsen syndrome". Mol Genet Metab. 75 (4): 308–16. doi:10.1016/S1096-7192(02)00007-0. PMID 12051962.

Template:WH Template:WS