Immunoglobulin receptor superfamily genes

Jump to navigation Jump to search

Associate Editor(s)-in-Chief: Henry A. Hoff

The immunoglobulin receptor superfamily of genes is in the immunoglobulin supergene family.

Human genes

B lymphocyte genes

Gene ID: 973 is CD79A CD79a molecule on 19q13.2: "The B lymphocyte antigen receptor is a multimeric complex that includes the antigen-specific component, surface immunoglobulin (Ig). Surface Ig non-covalently associates with two other proteins, Ig-alpha and Ig-beta, which are necessary for expression and function of the B-cell antigen receptor. This gene encodes the Ig-alpha protein of the B-cell antigen component. Alternatively spliced transcript variants encoding different isoforms have been described."[1]

  1. NP_001774.1 B-cell antigen receptor complex-associated protein alpha chain isoform 1 precursor: "Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1)."[1]
  2. NP_067612.1 B-cell antigen receptor complex-associated protein alpha chain isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site compared to variant 1. The resulting isoform (2) has the same N- and C-termini but is shorter compared to isoform 1."[1]

Gene ID: 974 is CD79B CD79b molecule on 17q23.3: "The B lymphocyte antigen receptor is a multimeric complex that includes the antigen-specific component, surface immunoglobulin (Ig). Surface Ig non-covalently associates with two other proteins, Ig-alpha and Ig-beta, which are necessary for expression and function of the B-cell antigen receptor. This gene encodes the Ig-beta protein of the B-cell antigen component. Alternatively spliced transcript variants encoding different isoforms have been described."[2]

  1. NP_000617.1 B-cell antigen receptor complex-associated protein beta chain isoform 1 precursor: "Transcript Variant: This variant (1) uses an alternate in-frame splice site in the 5' coding region, compared to variant 3. The encoded isoform (1) is shorter compared to isoform 3, but has identical N- and C- termini."[2]
  2. NP_001035022.1 B-cell antigen receptor complex-associated protein beta chain isoform 3 precursor: "Transcript Variant: This variant (3) represents the longest transcript and encodes the longest isoform (3)."[2]
  3. NP_001315979.1 B-cell antigen receptor complex-associated protein beta chain isoform 4 precursor: "Transcript Variant: This variant (4) lacks an alternate in-frame exon in its 5' coding region compared to variant 3. The encoded isoform (4) is shorter than isoform 3."[2]
  4. NP_067613.1 B-cell antigen receptor complex-associated protein beta chain isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site and also lacks an exon in the coding region, compared to variant 3. The encoded isoform (2) is shorter compared to isoform 3, but has identical N- and C- termini."[2]

Netrin genes

Gene ID: 1630 is DCC DCC netrin 1 receptor on 18q21.2: "This gene encodes a netrin 1 receptor. The transmembrane protein is a member of the immunoglobulin superfamily of cell adhesion molecules, and mediates axon guidance of neuronal growth cones towards sources of netrin 1 ligand. The cytoplasmic tail interacts with the tyrosine kinases Src and focal adhesion kinase (FAK, also known as PTK2) to mediate axon attraction. The protein partially localizes to lipid rafts, and induces apoptosis in the absence of ligand. The protein functions as a tumor suppressor, and is frequently mutated or downregulated in colorectal cancer and esophageal carcinoma."[3]

Immunoglobulin E genes

Gene ID: 2208 is FCER2 Fc fragment of IgE receptor II on 19p13.2: "The protein encoded by this gene is a B-cell specific antigen, and a low-affinity receptor for IgE. It has essential roles in B cell growth and differentiation, and the regulation of IgE production. This protein also exists as a soluble secreted form, then functioning as a potent mitogenic growth factor. Alternatively spliced transcript variants encoding different isoforms have been described for this gene."[4]

  1. NP_001193948.2 low affinity immunoglobulin epsilon Fc receptor isoform b: "Transcript Variant: This variant (2) contains an alternate 5' terminal exon and it thus differs in the 5' UTR and 5' coding region, compared to variant 1. The encoded isoform (b, also known as CD23b) is shorter and has a distinct N-terminus, compared to isoform a. This variant is supported by data in PubMed IDs 12379312 and 15843555."[4]
  2. NP_001207429.1 low affinity immunoglobulin epsilon Fc receptor isoform a: "Transcript Variant: This variant (3) uses an alternate donor splice site in the 5' UTR, compared to variant 1. Both variants 1 and 3 encode the same isoform (a, also known as CD23a)."[4]
  3. NP_001993.2 low affinity immunoglobulin epsilon Fc receptor isoform a: "Transcript Variant: This variant (1) encodes the longer isoform (a, also known as CD23a). Both variants 1 and 3 encode the same isoform."[4]

Immunoglobulin G genes

Gene ID: 2209 is FCGR1A Fc fragment of IgG receptor Ia on 1q21.2: "This gene encodes a protein that plays an important role in the immune response. This protein is a high-affinity Fc-gamma receptor. The gene is one of three related gene family members located on chromosome 1."[5]

  1. NP_000557.1 high affinity immunoglobulin gamma Fc receptor I isoform 2 precursor [variant 2].[5]
  2. NP_001365733.1 high affinity immunoglobulin gamma Fc receptor I isoform 1 precursor [variant 1].[5]
  3. NP_001365734.1 high affinity immunoglobulin gamma Fc receptor I isoform 3 precursor [variant 3].[5]
  4. NP_001365735.1 high affinity immunoglobulin gamma Fc receptor I isoform 4 precursor [variant 4].[5]
  5. NP_001365736.1 high affinity immunoglobulin gamma Fc receptor I isoform 5 [variant 5].[5]
  6. NP_001365737.1 high affinity immunoglobulin gamma Fc receptor I isoform 6 precursor [variant 6].[5]
  7. NP_001365738.1 high affinity immunoglobulin gamma Fc receptor I isoform 7 precursor [variant 7].[5]
  8. NP_001365739.1 high affinity immunoglobulin gamma Fc receptor I isoform 8 precursor [variant 8].[5]
  9. NP_001365740.1 high affinity immunoglobulin gamma Fc receptor I isoform 9 precursor [variant 9].[5]

Gene ID: 2212 is FCGR2A Fc fragment of IgG receptor IIa on 1q23.3: "This gene encodes one member of a family of immunoglobulin Fc receptor genes found on the surface of many immune response cells. The protein encoded by this gene is a cell surface receptor found on phagocytic cells such as macrophages and neutrophils, and is involved in the process of phagocytosis and clearing of immune complexes. Alternative splicing results in multiple transcript variants."[6]

  1. NP_001129691.1 low affinity immunoglobulin gamma Fc region receptor II-a isoform 1 precursor: "Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1)."[6]
  2. NP_001362225.1 low affinity immunoglobulin gamma Fc region receptor II-a isoform 3 precursor [variant 3].[6]
  3. NP_001362226.1 low affinity immunoglobulin gamma Fc region receptor II-a isoform 4 precursor [variant 4].[6]
  4. NP_067674.2 low affinity immunoglobulin gamma Fc region receptor II-a isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site in the 5' coding region, compared to variant 1, resulting in a shorter protein (isoform 2), compared to isoform 1."[6]

Gene ID: 2213 is FCGR2B Fc fragment of IgG receptor IIb on 1q23.3: "The protein encoded by this gene is a low affinity receptor for the Fc region of immunoglobulin gamma complexes. The encoded protein is involved in the phagocytosis of immune complexes and in the regulation of antibody production by B-cells. Variations in this gene may increase susceptibilty to systemic lupus erythematosus (SLE). Several transcript variants encoding different isoforms have been found for this gene."[7]

  1. NP_001002273.1 low affinity immunoglobulin gamma Fc region receptor II-b isoform 2 precursor: "Transcript Variant: This variant (2) lacks an alternate in-frame exon and uses an alternate in-frame splice junction at the 5' end of an exon compared to variant 1. The resulting isoform (2) has the same N- and C-termini but is shorter compared to isoform 1."[7]
  2. NP_001002274.1 low affinity immunoglobulin gamma Fc region receptor II-b isoform 3 precursor: "Transcript Variant: This variant (3) lacks an alternate in-frame exon compared to variant 1. The resulting isoform (3) has the same N- and C-termini but is shorter compared to isoform 1."[7]
  3. NP_001002275.1 low affinity immunoglobulin gamma Fc region receptor II-b isoform 4 precursor: "Transcript Variant: This variant (4) uses an alternate in-frame splice junction at the 5' end of an exon compared to variant 1. The resulting isoform (4) has the same N- and C-termini but is 1 aa shorter compared to isoform 1."[7]
  4. NP_001177757.1 low affinity immunoglobulin gamma Fc region receptor II-b isoform 5: "Transcript Variant: This variant (5) lacks an alternate in-frame exon compared to variant 1. The resulting isoform (5) has the same N- and C-termini but is shorter compared to isoform 1."[7]
  5. NP_003992.3 low affinity immunoglobulin gamma Fc region receptor II-b isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes the longest isoform (1)."[7]

Gene ID: 2214 is FCGR3A Fc fragment of IgG receptor IIIa on 1q23.3: "This gene encodes a receptor for the Fc portion of immunoglobulin G, and it is involved in the removal of antigen-antibody complexes from the circulation, as well as other other antibody-dependent responses. This gene (FCGR3A) is highly similar to another nearby gene (FCGR3B) located on chromosome 1. The receptor encoded by this gene is expressed on natural killer (NK) cells as an integral membrane glycoprotein anchored through a transmembrane peptide, whereas FCGR3B is expressed on polymorphonuclear neutrophils (PMN) where the receptor is anchored through a phosphatidylinositol (PI) linkage. Mutations in this gene have been linked to susceptibility to recurrent viral infections, susceptibility to systemic lupus erythematosus, and alloimmune neonatal neutropenia. Alternatively spliced transcript variants encoding different isoforms have been found for this gene."[8]

  1. NP_000560.7 low affinity immunoglobulin gamma Fc region receptor III-A isoform a precursor: "Transcript Variant: This variant (1) retains an intron in its 5' UTR and 5' coding region compared to variant 3.Variants 1, 3, 4 and 6 encode the same isoform (c).compared to isoform c."[8]
  2. NP_001121064.2 low affinity immunoglobulin gamma Fc region receptor III-A isoform b: "Transcript Variant: This variant (2) retains an intron in its 5' UTR and 5' coding region, and uses an alternate in-frame splice site in its 5' coding region compared to variant 3. The encoded isoform (2) is longer than isoform c. This isoform (b) lacks a predicted signal peptide compared to isoform c."[8]
  3. NP_001121065.1 low affinity immunoglobulin gamma Fc region receptor III-A isoform c precursor: "Transcript Variant: This variant (3) encodes isoform c. Variants 3, 4 and 6 encode the same isoform (c)."[8]
  4. NP_001121067.1 low affinity immunoglobulin gamma Fc region receptor III-A isoform c precursor: "Transcript Variant: This variant (4) differs in the 5' UTR compared to variant 3. Variants 3, 4 and 6 encode the same isoform (c)."[8]
  5. NP_001121068.1 low affinity immunoglobulin gamma Fc region receptor III-A isoform d precursor: "Transcript Variant: This variant (5) uses an alternate in-frame splice site in the 5' coding region compared to variant 3. The encoded isoform (d) is shorter than isoform c."[8]
  6. NP_001316049.1 low affinity immunoglobulin gamma Fc region receptor III-A isoform c precursor: "Transcript Variant: This variant (6) differs in the 5' UTR compared to variant 3. Variants 3, 4 and 6 encode the same isoform (c)."[8]
  7. NP_001316051.1 low affinity immunoglobulin gamma Fc region receptor III-A isoform e: "Transcript Variant: This variant (7) retains an intron in its 5' UTR and 5' coding region, and lacks an alternate in-frame exon in its 3' coding region compared to variant 3. The encoded isoform is longer than isoform c. This isoform (e) lacks a predicted signal peptide compared to isoform c."[8]

Killer cell genes

Gene ID: 3802 is KIR2DL1 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[9]

  1. NP_055033.2 killer cell immunoglobulin-like receptor 2DL1 precursor.[9]

Gene ID: 3803 is KIR2DL2 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 2 on 19q13.4: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[10]

  1. NP_055034.2 killer cell immunoglobulin-like receptor 2DL2 precursor.[10]

Gene ID: 3804 is KIR2DL3 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[11]

  1. NP_056952.2 killer cell immunoglobulin-like receptor 2DL3 precursor.[11]

Gene ID: 3805 is KIR2DL4 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 4 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. Alternate alleles of this gene are represented on multiple alternate reference loci (ALT_REF_LOCs). Alternative splicing results in multiple transcript variants, some of which may not be annotated on the primary reference assembly."[12]

  1. NP_001074239.1 killer cell immunoglobulin-like receptor 2DL4 isoform c precursor: "Transcript Variant: This variant (3) lacks an internal exon in the coding region, compared to variant 1. It encodes isoform c, which is shorter than isoform a."[12]
  2. NP_001074241.1 killer cell immunoglobulin-like receptor 2DL4 isoform b precursor: "Transcript Variant: This variant (2) is one nt shorter than variant 1. It encodes isoform b, which is shorter and has a distinct C-terminus, compared to isoform a."[12]
  3. NP_002246.5 killer cell immunoglobulin-like receptor 2DL4 isoform a precursor: "This variant (1) represents the longest transcript and encodes the longest isoform (1)."[12]

Gene ID: 3806 is KIR2DS1 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 1 aka MHC class I NK cell receptor Eb6 ActI on 19q13.4: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[13]

  1. NP_055327.1 killer cell immunoglobulin-like receptor 2DS1 precursor.[13]

Gene ID: 3808 is KIR2DS3 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 3 on 19q13.4: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[14]

  1. NP_036445.1 killer cell immunoglobulin-like receptor 2DS3 precursor.[14]

Gene ID: 3809 is KIR2DS4 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 4 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[15]

  1. NP_001268900.1 killer cell immunoglobulin-like receptor 2DS4 isoform 2 precursor: "Transcript Variant: This variant (2) represents the 22nt deletion allele KIR2DS4*003 which results in a frameshift and loss of the C-terminal membrane binding domain. The resulting protein (isoform 2) has a distinct C-teminus and is likely secreted."[15]
  2. NP_001268901.1 killer cell immunoglobulin-like receptor 2DS4 isoform 3 precursor: "Transcript Variant: This variant (3) represents a 22nt deletion allele which also lacks a coding exon. The resulting protein (isoform 3) is frameshifted and lacks the C-terminal membrane binding domain found in the functional allele (KRI2DS4*001)."[15]
  3. NP_036446.3 killer cell immunoglobulin-like receptor 2DS4 isoform 1 precursor: "Transcript Variant: This variant (1) represents the functional allele (KIR2DS4*001) and encodes a functional, membrane-bound, activating receptor (isoform 1)."[15]

Gene ID: 3810 is KIR2DS5 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 5: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[16]

  1. NP_055328.2 killer cell immunoglobulin-like receptor 2DS5 precursor.[16]

Gene ID: 3811 is KIR3DL1 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[17]

  1. NP_001309097.1 killer cell immunoglobulin-like receptor 3DL1 precursor: "Transcript Variant: This variant (2) represents an alternate allele of the KIR3DL1 gene, as represented in ALT_REF_LOCI_30."[17]
  2. NP_037421.2 killer cell immunoglobulin-like receptor 3DL1 precursor: "Transcript Variant: This variant (1) represents the reference genome allele of the KIR3DL1 gene."[17]

Gene ID: 3812 is KIR3DL2 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 2 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene."[18]

  1. NP_001229796.1 killer cell immunoglobulin-like receptor 3DL2 isoform 2 precursor: "Transcript Variant: This variant (2) lacks an exon in the coding region but maintains the reading frame, compared to variant 1. The encoded isoform (2) is shorter than isoform 1."[18]
  2. NP_006728.2 killer cell immunoglobulin-like receptor 3DL2 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1)."[18]

Gene ID: 3813 is KIR3DS1 killer cell immunoglobulin like receptor, three Ig domains and short cytoplasmic tail 1 on 19q13.4: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. Alternatively spliced transcript variants encoding different isoforms have been found for this gene."[19]

  1. NP_001077008.1 killer cell immunoglobulin-like receptor 3DS1 isoform 1 precursor: "Transcript Variant: This variant (1) encodes the longest isoform (1)."[19]
  2. NP_001269099.1 killer cell immunoglobulin-like receptor 3DS1 isoform 2 precursor: "Transcript Variant: This variant (2) lacks an in-frame exon in the 5' coding region, compared to variant 1. The resulting isoform (2) lacks an internal segment, compared to isoform 1."[19]
  3. NP_001269100.1 killer cell immunoglobulin-like receptor 3DS1 isoform 3: "Transcript Variant: This variant (3) lacks two consecutive exons in the 5' coding region, compared to variant 1. The resulting isoform (3) lacks an internal segment, compared to isoform 1."[19]

Gene ID: 115653 is KIR3DL3 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 3 on 19q13.42: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene is one of the "framework" loci that is present on all haplotypes."[20]

  1. NP_703144.3 killer cell immunoglobulin-like receptor 3DL3 precursor, cd05711 Location: 123 → 217 Ig_FcalphaRI; Immunoglobulin (IG)-like domain of of FcalphaRI, smart00410 Location: 35 → 95 IG_like; Immunoglobulin like, cl11960 Location: 28 → 117 Ig; Immunoglobulin domain.[20]

Gene ID: 553128 is KIR2DL5B killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 5B on 19p13.3: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[21]

  1. NP_001018091.1 killer cell immunoglobulin-like receptor 2DL5B precursor.[21]

Gene ID: 100132285 is KIR2DS2 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 2 on 19q13.4: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response. This gene represents a haplotype-specific family member that encodes a protein with a short cytoplasmic tail. Alternative splicing results in multiple transcript variants."[22]

  1. NP_001278624.1 killer cell immunoglobulin-like receptor 2DS2 isoform b precursor: "Transcript Variant: This variant (2) uses an alternate splice site in its 3' terminal exon, and it thus differs in the 3' coding region, compared to variant 1. The encoded isoform (b) has a distinct C-terminus and is longer than isoform a."[22]
  2. NP_001278625.1 killer cell immunoglobulin-like receptor 2DS2 isoform c precursor: "Transcript Variant: This variant (3) lacks an alternate in-frame exon in the 5' coding region, compared to variant 1, resulting in an isoform (c, also known as nkat5-delta-Ig1) that is shorter than isoform a."[22]
  3. NP_001278629.1 killer cell immunoglobulin-like receptor 2DS2 isoform d precursor: "Transcript Variant: This variant (4) lacks two alternate in-frame exons that encompass parts of the 5' and central coding regions, compared to variant 1. The encoded isoform (d) is shorter than isoform a."[22]
  4. NP_001278630.1 killer cell immunoglobulin-like receptor 2DS2 isoform e precursor: "Transcript Variant: This variant (5) lacks an alternate in-frame exon in the 3' coding region, compared to variant 1, resulting in an isoform (e) that is shorter than isoform a."[22]
  5. NP_036444.1 killer cell immunoglobulin-like receptor 2DS2 isoform a precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes isoform a."[22]

Gene ID: 57292 is KIR2DL5A killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 5A on 19p13.3: "Killer cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer cells and subsets of T cells. The KIR genes are polymorphic and highly homologous and they are found in a cluster on chromosome 19q13.4 within the 1 Mb leukocyte receptor complex (LRC). The gene content of the KIR gene cluster varies among haplotypes, although several "framework" genes are found in all haplotypes (KIR3DL3, KIR3DP1, KIR3DL4, KIR3DL2). The KIR proteins are classified by the number of extracellular immunoglobulin domains (2D or 3D) and by whether they have a long (L) or short (S) cytoplasmic domain. KIR proteins with the long cytoplasmic domain transduce inhibitory signals upon ligand binding via an immune tyrosine-based inhibitory motif (ITIM), while KIR proteins with the short cytoplasmic domain lack the ITIM motif and instead associate with the TYRO protein tyrosine kinase binding protein to transduce activating signals. The ligands for several KIR proteins are subsets of HLA class I molecules; thus, KIR proteins are thought to play an important role in regulation of the immune response."[23]

  1. NP_065396.1 killer cell immunoglobulin-like receptor 2DL5A precursor.[23]

Leukocyte genes

Gene ID: 3903 is LAIR1 leukocyte associated immunoglobulin like receptor 1 on 19q13.42: "The protein encoded by this gene is an inhibitory receptor found on peripheral mononuclear cells, including natural killer cells, T cells, and B cells. Inhibitory receptors regulate the immune response to prevent lysis of cells recognized as self. The gene is a member of both the immunoglobulin superfamily and the leukocyte-associated inhibitory receptor family. The gene maps to a region of 19q13.4 called the leukocyte receptor cluster, which contains at least 29 genes encoding leukocyte-expressed receptors of the immunoglobulin superfamily. The encoded protein has been identified as an anchor for tyrosine phosphatase SHP-1, and may induce cell death in myeloid leukemias. Alternative splicing results in multiple transcript variants."[24]

  1. NP_001275952.2 leukocyte-associated immunoglobulin-like receptor 1 isoform c precursor: "Transcript Variant: This variant (c) lacks an in-frame exon and uses an alternate in-frame splice site in the central coding region, compared to variant 1. The encoded isoform (c) is shorter, compared to isoform a."[24]
  2. NP_001275954.2 leukocyte-associated immunoglobulin-like receptor 1 isoform e precursor: "Transcript Variant: This variant (e) uses an alternate in-frame splice site in the central coding region. The encoded isoform (e) is shorter, compared to isoform a."[24]
  3. NP_001275955.2 leukocyte-associated immunoglobulin-like receptor 1 isoform f: "Transcript Variant: This variant (f) differs in the 5' UTR, lacks part of the 5' coding region, and uses an alternate start codon, compared to variant a. The encoded isoform (f) has a shorter and distinct N-terminus, compared to isoform a."[24]
  4. NP_001275956.2 leukocyte-associated immunoglobulin-like receptor 1 isoform g: "Transcript Variant: This variant (g) differs in the 5' UTR, lacks part of the 5' coding region, and uses an alternate start codon, compared to variant a. The encoded isoform (g) has a shorter and distinct N-terminus, compared to isoform a."[24]
  5. NP_002278.2 leukocyte-associated immunoglobulin-like receptor 1 isoform a precursor: "Transcript Variant: This variant (a) encodes the longest isoform (a)."[24]
  6. NP_068352.2 leukocyte-associated immunoglobulin-like receptor 1 isoform b precursor: "Transcript Variant: This variant (b) lacks an in-frame exon in the central coding region, compared to variant 1. The encoded isoform (b) is shorter, compared to isoform a."[24]

Gene ID: 3904 is LAIR2 leukocyte associated immunoglobulin like receptor 2 on 19q13.42: "The protein encoded by this gene is a member of the immunoglobulin superfamily. It was identified by its similarity to leukocyte-associated immunoglobulin-like receptor 1, a membrane-bound receptor that modulates innate immune response. The protein encoded by this locus is a soluble receptor that may play roles in both inhibition of collagen-induced platelet aggregation and vessel formation during placental implantation. This gene maps to a region of 19q13.4, termed the leukocyte receptor cluster, which contains 29 genes in the immunoglobulin superfamily. Alternatively spliced transcript variants have been described for this gene."[25]

  1. NP_002279.2 leukocyte-associated immunoglobulin-like receptor 2 isoform a precursor: "Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (a)."[25]
  2. NP_067154.1 leukocyte-associated immunoglobulin-like receptor 2 isoform b precursor: "Transcript Variant: This variant (2) lacks an alternate in-frame exon compared to variant 1, resulting in an isoform (b) which is shorter compared to isoform a."[25]

Gene ID: 10288 is LILRB2 leukocyte immunoglobulin like receptor B2 on 19q13.42: "This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene."[26]

  1. NP_001074447.2 leukocyte immunoglobulin-like receptor subfamily B member 2 isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site in the central coding region, compared to variant 1. The encoded isoform (2) is shorter, compared to isoform 1. Both variants 2 and 3 encode the same isoform."[26]
  2. NP_001265332.2 leukocyte immunoglobulin-like receptor subfamily B member 2 isoform 2 precursor: "Transcript Variant: This variant (3) differs in the 5' UTR and uses an alternate in-frame splice site in the central coding region, compared to variant 1. The encoded isoform (2) is shorter, compared to isoform 1. Both variants 2 and 3 encode the same isoform."[26]
  3. NP_001265333.2 leukocyte immunoglobulin-like receptor subfamily B member 2 isoform 3: "Transcript Variant: This variant (4) lacks a portion of the 5' coding region, and uses a downstream in-frame start codon, compared to variant 1. The encoded isoform (3) has a shorter N-terminus, compared to isoform 1."[26]
  4. NP_001265334.2 leukocyte immunoglobulin-like receptor subfamily B member 2 isoform 4 precursor: "Transcript Variant: This variant (5) has a shorter 5' UTR, and lacks an internal exon which results in a frameshift and an early stop codon, compared to variant 1. The encoded isoform (4) has a shorter and distinct C-terminus, compared to isoform 1."[26]
  5. NP_001265335.2 leukocyte immunoglobulin-like receptor subfamily B member 2 isoform 5 precursor: "Transcript Variant: This variant (6) has a shorter 5' UTR, lacks several exons, and its 3'-terminal exon extends past a splice site that is used in variant 1. The resulting protein (isoform 5) has a shorter and distinct C-terminus, compared to isoform 1. Isoform 5 lacks the transmembrane domain found in isoform 1 and is suspected to be soluble (PMID: 19658091)."[26]
  6. NP_005865.3 leukocyte immunoglobulin-like receptor subfamily B member 2 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes the longest isoform (1)."[26]

Gene ID: 10859 is LILRB1 leukocyte immunoglobulin like receptor B1 on 19q13.42: "This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene."[27]

  1. NP_001075106.2 leukocyte immunoglobulin-like receptor subfamily B member 1 isoform 2 precursor: "Transcript Variant: This variant (2) has a shorter 5' UTR and uses two alternate in-frame splice sites in the coding region, compared to variant 1. The resulting protein (isoform 2) is longer, compared to isoform 1."[27]
  2. NP_001075107.2 leukocyte immunoglobulin-like receptor subfamily B member 1 isoform 3 precursor: "Transcript Variant: This variant (3) uses an alternate in-frame splice site in the central coding region and differs in the 5' UTR, compared to variant 1. The resulting protein (isoform 3) is longer, compared to isoform 1."[27]
  3. NP_001075108.2 leukocyte immunoglobulin-like receptor subfamily B member 1 isoform 4 precursor: "Transcript Variant: This variant (4) uses an alternate in-frame splice site in the 3' coding region and differs in the 5' UTR, compared to variant 1. The resulting protein (isoform 4) is longer, compared to isoform 1."[27]
  4. NP_001265327.2 leukocyte immunoglobulin-like receptor subfamily B member 1 isoform 5 precursor: "Transcript Variant: This variant (5) has a shorter 5' UTR, lacks an internal in-frame exon, and uses an alternate splice site in the central coding region, compared to variant 1. The resulting protein (isoform 5) is shorter, compared to isoform 1."[27]
  5. NP_001265328.2 leukocyte immunoglobulin-like receptor subfamily B member 1 isoform 6 precursor: "Transcript Variant: This variant (6) has a shorter 5' UTR, lacks several exons, and its 3'-terminal exon extends past a splice site that is used in variant 1. The resulting protein (isoform 6) has a shorter and distinct C-terminus, compared to isoform 1. Isoform 6 lacks the transmembrane domain found in isoform 1 and is suspected to be soluble (PMID: 19658091)."[27]
  6. NP_006660.4 leukocyte immunoglobulin-like receptor subfamily B member 1 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes isoform 1."[27]

Gene ID: 10990 is LILRB5 leukocyte immunoglobulin like receptor B5 on 19q13.42: "This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Several other LIR subfamily B receptors are expressed on immune cells where they bind to MHC class I molecules on antigen-presenting cells and inhibit stimulation of an immune response. Multiple transcript variants encoding different isoforms have been found for this gene."[28]

  1. NP_001074911.2 leukocyte immunoglobulin-like receptor subfamily B member 5 isoform 1 precursor: "Transcript Variant: This variant (1) encodes isoform 1."[28]
  2. NP_001074912.2 leukocyte immunoglobulin-like receptor subfamily B member 5 isoform 3 precursor: "Transcript Variant: This variant (3) lacks an alternate in-frame exon in the 5' coding region compared to variant 1. The encoded isoform (3) is shorter than isoform 1."[28]
  3. NP_001291386.2 leukocyte immunoglobulin-like receptor subfamily B member 5 isoform 4 precursor: "Transcript Variant: This variant (4) uses alternate in-frame splice sites in the 5' coding region and in the 3' coding region, compared to variant 1. The encoded isoform (4) is longer than isoform 1."[28]
  4. NP_006831.2 leukocyte immunoglobulin-like receptor subfamily B member 5 isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site in the 3' coding region compared to variant 1. The encoded isoform (2) is shorter than isoform 1."[28]

Gene ID: 11006 is LILRB4 leukocyte immunoglobulin like receptor B4 on 19q13.42: "This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. The receptor can also function in antigen capture and presentation. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene."[29]

  1. NP_001265355.2 leukocyte immunoglobulin-like receptor subfamily B member 4 isoform 1 precursor: "Transcript Variant: This variant (1) encodes isoform 1."[29]
  2. NP_001265356.2 leukocyte immunoglobulin-like receptor subfamily B member 4 isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site in the 3' coding region, compared to variant 1. The encoded isoform (2) is shorter, compared to isoform 1."[29]
  3. NP_001265357.2 leukocyte immunoglobulin-like receptor subfamily B member 4 isoform 3 precursor: "Transcript Variant: This variant (3) uses two alternate in-frame splice sites in the central and 3' coding region, compared to variant 1. The encoded isoform (3) is the same length, compared to isoform 1."[29]
  4. NP_001265358.2 leukocyte immunoglobulin-like receptor subfamily B member 4 isoform 4: "Transcript Variant: This variant (4) lacks an in-frame exon in the 5' coding region, uses an alternate in-frame splice site in the central coding region, and initiates translation at an upstream start codon, compared to variant 1. The encoded isoform (4) is longer and contains a distinct N-terminus, compared to isoform 1."[29]
  5. NP_001265359.2 leukocyte immunoglobulin-like receptor subfamily B member 4 isoform 5 precursor: "Transcript Variant: This variant (5) lacks several exons, and its 3'-terminal exon extends past a splice site that is used in variant 1. The encoded isoform (5) has a shorter and distinct C-terminus, compared to isoform 1. Isoform 5 lacks the transmembrane domain found in isoform 1 and is suspected to be soluble (PMID: 19658091)."[29]

Gene ID: 11024 is LILRA1 leukocyte immunoglobulin like receptor A1 on 19q13.42: "This gene encodes an activating member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein is predominantly expressed in B cells, interacts with major histocompatibility complex class I ligands, and contributes to the regulation of immune responses. Alternative splicing results in multiple transcript variants encoding different isoforms."[30]

  1. NP_001265247.1 leukocyte immunoglobulin-like receptor subfamily A member 1 isoform 2 precursor: "Transcript Variant: This variant (2, also known as LIR6b) lacks two consecutive in-frame exons in the coding region, compared to variant 1. The encoded isoform (2) is shorter, compared to isoform 1."[30]
  2. NP_001265248.1 leukocyte immunoglobulin-like receptor subfamily A member 1 isoform 3 precursor: "Transcript Variant: This variant (3) has a shorter 5' UTR, lacks several exons and its 3'-terminal exon extends past a splice site that is used in variant 1. The encoded isoform (3) has a shorter and distinct C-terminus, compared to isoform 1. Isoform 3 lacks the transmembrane domain found in isoform 1 and is suspected to be soluble (PMID: 19658091)."[30]
  3. NP_006854.1 leukocyte immunoglobulin-like receptor subfamily A member 1 isoform 1 precursor: "Transcript Variant: This variant (1, also known as LIR6a) represents the longest transcript and encodes the longest isoform (1)."[30]

Gene ID: 11025 is LILRB3 leukocyte immunoglobulin like receptor B3 on 19q13.42: "This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene."[31]

  1. NP_001074919.2 leukocyte immunoglobulin-like receptor subfamily B member 3 isoform 1 precursor [variant 1].[31]
  2. NP_001307889.1 leukocyte immunoglobulin-like receptor subfamily B member 3 isoform 3 precursor [variant 3].[31]
  3. NP_006855.3 leukocyte immunoglobulin-like receptor subfamily B member 3 isoform 2 precursor [variant 2].[31]

Gene ID: 11026 is LILRA3 leukocyte immunoglobulin like receptor A3 on 19q13.4: "This gene encodes a member of a family of immunoreceptors that are expressed predominantly in monocytes and B cells, and at lower levels in dendritic cells and natural killer cells. The encoded protein lacks the transmembrane region found in other members of this family. It acts as a soluble receptor for class I major histocompatibility complex (MHC) antigens. Alternatively spliced transcript variants encoding different isoforms have been found. This gene is located in a cluster of related genes on chromosome 19 and is polymorphic in human populations, with many individuals containing a deletion of this genomic region."[32]

  1. NP_001166125.1 leukocyte immunoglobulin-like receptor subfamily A member 3 isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate in-frame splice site in the central coding region, compared to variant 1. The resulting isoform (2) lacks an internal segment, compared to isoform 1."[32]
  2. NP_006856.3 leukocyte immunoglobulin-like receptor subfamily A member 3 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1)."[32]

Gene ID: 11027 is LILRA2 leukocyte immunoglobulin like receptor A2 on 19q13.42: "This gene encodes a member of a family of immunoreceptors that are expressed predominantly on monocytes and B cells, and at lower levels on dendritic cells and natural killer cells. The encoded protein is an activating receptor that inhibits dendritic cell differentiation and antigen presentation and suppresses innate immune response. Alternatively spliced transcript variants encoding different isoforms have been found. This gene is located in a cluster of related genes on chromosome 19 and there is a pseudogene for this gene on chromosome 3."[33]

  1. NP_001124389.2 leukocyte immunoglobulin-like receptor subfamily A member 2 isoform a precursor: "Transcript Variant: This variant (1) encodes isoform a."[33]
  2. NP_001277199.1 leukocyte immunoglobulin-like receptor subfamily A member 2 isoform c precursor: "Transcript Variant: This variant (3) lacks in-frame exons in the 5' and 3' coding regions, compared to variant 1. The encoded isoform (c) is shorter than isoform a."[33]
  3. NP_001277200.1 leukocyte immunoglobulin-like receptor subfamily A member 2 isoform d precursor: "Transcript Variant: This variant (4) differs in the 5' UTR, and lacks an exon and contains an alternate exon in the 3' coding region, which results in a frameshift, compared to variant 1. The encoded isoform (d) has a distinct C-terminus and is longer than isoform a."[33]
  4. NP_006857.2 leukocyte immunoglobulin-like receptor subfamily A member 2 isoform b precursor: "Transcript Variant: This variant (2) differs in the 5' UTR and lacks an alternate in-frame exon in the 3' coding region, compared to variant 1. The encoded isoform (b) is shorter than isoform a."[33]

Gene ID: 23547 is LILRA4 leukocyte immunoglobulin like receptor A4 on 19q13.42: "This gene encodes an immunoglobulin-like cell surface protein that is expressed predominantly on plasmacytoid dendritic cells (PDCs) and modulates the function of these cells in the immune response. Expression of this gene is downregulated by interleukin 3 (IL3). This gene is one of a cluster of highly related genes located at chromosomal region 19q13.4."[34]

  1. NP_036408.4 leukocyte immunoglobulin-like receptor subfamily A member 4 precursor.[34]

Gene ID: 353514 is LILRA5 leukocyte immunoglobulin like receptor A5 on 19q13.42: "The protein encoded by this gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family. LIR family members are known to have activating and inibitory functions in leukocytes. Crosslink of this receptor protein on the surface of monocytes has been shown to induce calcium flux and secretion of several proinflammatory cytokines, which suggests the roles of this protein in triggering innate immune responses. This gene is one of the leukocyte receptor genes that form a gene cluster on the chromosomal region 19q13.4. Four alternatively spliced transcript variants encoding distinct isoforms have been described."[35]

  1. NP_067073.1 leukocyte immunoglobulin-like receptor subfamily A member 5 isoform 1 precursor: "Transcript Variant: This variant (1), also known as LIR9m1, encodes the longest isoform (1)."[35]
  2. NP_870994.1 leukocyte immunoglobulin-like receptor subfamily A member 5 isoform 3: "Transcript Variant: This variant (3), also known as LIR9s1, differs in the 3' end-region, which includes a part of the coding region, as compared to variant 1. The resulting isoform (3) has a distinct and shorter C-terminus, as compared to isoform 1."[35]
  3. NP_871714.1 leukocyte immunoglobulin-like receptor subfamily A member 5 isoform 2: "Transcript Variant: This variant (2), also known as LIR9m2, lacks an in-frame coding segment, as compared to variant 1. The resulting isoform (2) lacks an internal region, as compared to isoform 1."[35]
  4. NP_871715.1 leukocyte immunoglobulin-like receptor subfamily A member 5 isoform 4: "Transcript Variant: This variant (4), also known as LIR9s2, lacks an in-frame coding segment and differs in the 3' end-region, as compared to variant 1. The resulting isoform (4) lacks an internal region and has a distinct and shorter C-terminus as compared to isoform 1."[35]

Polymeric molecule genes

Gene ID: 5284 is PIGR polymeric immunoglobulin receptor on 1q32.1: "This gene is a member of the immunoglobulin superfamily. The encoded poly-Ig receptor binds polymeric immunoglobulin molecules at the basolateral surface of epithelial cells; the complex is then transported across the cell to be secreted at the apical surface. A significant association was found between immunoglobulin A nephropathy and several SNPs in this gene."[36]

  1. NP_002635.2 polymeric immunoglobulin receptor precursor.[36]

Hepatitis A virus cell genes

Gene ID: 26762 is HAVCR1 hepatitis A virus cellular receptor 1 on 5q33.3: "The protein encoded by this gene is a membrane receptor for both human hepatitis A virus (HHAV) and TIMD4. The encoded protein may be involved in the moderation of asthma and allergic diseases. The reference genome represents an allele that retains a MTTVP amino acid segment that confers protection against atopy in HHAV seropositive individuals. Alternative splicing of this gene results in multiple transcript variants. Related pseudogenes have been identified on chromosomes 4, 12 and 19."[37]

  1. NP_001166864.1 hepatitis A virus cellular receptor 1 isoform a precursor: "Transcript Variant: This variant (3) differs in the 5' UTR compared to variant 1. Both variants 1 and 3 encode isoform a."[37]
  2. NP_001295085.1 hepatitis A virus cellular receptor 1 isoform b precursor: "Transcript Variant: This variant (4) differs in the 5' UTR, and lacks an alternate exon that results in a frameshift in the 3' coding region, compared to variant 1. The encoded isoform (b) has a distinct C-terminus and is longer than isoform a."[37]
  3. NP_036338.2 hepatitis A virus cellular receptor 1 isoform a precursor: "Transcript Variant: This variant (1) encodes the shorter isoform (a). Both variants 1 and 3 encode isoform a."[37]

Gene ID: 84868 is HAVCR2 hepatitis A virus cellular receptor 2 on 5q33.3: "The protein encoded by this gene belongs to the immunoglobulin superfamily, and TIM family of proteins. CD4-positive T helper lymphocytes can be divided into types 1 (Th1) and 2 (Th2) on the basis of their cytokine secretion patterns. Th1 cells are involved in cell-mediated immunity to intracellular pathogens and delayed-type hypersensitivity reactions, whereas, Th2 cells are involved in the control of extracellular helminthic infections and the promotion of atopic and allergic diseases. This protein is a Th1-specific cell surface protein that regulates macrophage activation, and inhibits Th1-mediated auto- and alloimmune responses, and promotes immunological tolerance."[38]

  1. NP_116171.3 hepatitis A virus cellular receptor 2 precursor.[38]

Fc genes

Gene ID: 79368 is FCRL2 Fc receptor like 2 on 1q23.1: "This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein has four extracellular C2-type immunoglobulin domains, a transmembrane domain and a cytoplasmic domain that contains one immunoreceptor-tyrosine activation motif and two immunoreceptor-tyrosine inhibitory motifs. This protein may be a prognostic marker for chronic lymphocytic leukemia. Alternatively spliced transcript variants have been described, but their biological validity has not been determined."[39]

  1. NP_001152960.1 Fc receptor-like protein 2 isoform 2 precursor: "Transcript Variant: This variant (2) lacks three alternate exons in the 3' coding region, which results in a frameshift, compared to variant 1. The encoded isoform (2) has a distinct C-terminus and is shorter than isoform 1."[39]
  2. NP_110391.2 Fc receptor-like protein 2 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes the longer isoform (1)."[39]

Gene ID: 83416 is FCRL5 Fc receptor like 5 on 1q23.1: "This gene encodes a member of the immunoglobulin receptor superfamily and the Fc-receptor like family. This gene and several other Fc receptor-like gene members are clustered on the long arm of chromosome 1. The encoded protein is a single-pass type I membrane protein and contains 8 immunoglobulin-like C2-type domains. This gene is implicated in B cell development and lymphomagenesis. Alternatively spliced transcript variants encoding different isoforms have been identified."[40]

  1. NP_001182317.1 Fc receptor-like protein 5 isoform 2 precursor: "Transcript Variant: This variant (2) has an alternate splice site in the 3' coding region, resulting in frame-shift, as compared to variant 1. The resulting isoform (2) has a different and longer C-terminus, as compared to isoform 1."[40]
  2. NP_112571.2 Fc receptor-like protein 5 isoform 1 precursor: "Transcript Variant: This variant (1) encodes the dominant isoform (1)."[40]

Gene ID: 83417 is FCRL4 Fc receptor like 4 on 1q23.1: "This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein has four extracellular C2-type immunoglobulin domains, a transmembrane domain and a cytoplasmic domain that contains three immune-receptor tyrosine-based inhibitory motifs. This protein may play a role in the function of memory B-cells in the epithelia. Aberrations in the chromosomal region encoding this gene are associated with non-Hodgkin lymphoma and multiple myeloma."[41]

  1. NP_112572.1 Fc receptor-like protein 4 precursor.[41]

Gene ID: 115350 is FCRL1 Fc receptor like 1 on 1q23.1: "This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein contains three extracellular C2-like immunoglobulin domains, a transmembrane domain and a cytoplasmic domain with two immunoreceptor-tyrosine activation motifs. This protein may play a role in the regulation of cancer cell growth. Alternative splicing results in multiple transcript variants."[42]

  1. NP_001152869.1 Fc receptor-like protein 1 isoform 2 precursor: "Transcript Variant: This variant (2) uses an alternate exon in the 3' coding region compared to variant 1, that results in a frameshift. This variant encodes isoform 2, which is shorter and has a distinct C-terminus compared to isoform 1."[42]
  2. NP_001152870.1 Fc receptor-like protein 1 isoform 3 precursor: "Transcript Variant: This variant (3) uses an alternate in-frame splice site in the 3' coding region compared to variant 1. This variant encodes isoform 3, which is shorter than isoform 1."[42]
  3. NP_443170.1 Fc receptor-like protein 1 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes the longest isoform (1)."[42]

Gene ID: 115352 is FCRL3 Fc receptor like 3 aka immunoglobulin superfamily receptor translocation associated protein 3 on 1q23.1: "This gene encodes a member of the immunoglobulin receptor superfamily and is one of several Fc receptor-like glycoproteins clustered on the long arm of chromosome 1. The encoded protein contains immunoreceptor-tyrosine activation motifs and immunoreceptor-tyrosine inhibitory motifs in its cytoplasmic domain and may play a role in regulation of the immune system. Mutations in this gene have been associated with rheumatoid arthritis, autoimmune thyroid disease, and systemic lupus erythematosus. Alternative splicing results in multiple transcript variants."[43]

  1. NP_001307262.1 Fc receptor-like protein 3 isoform 3 precursor: "Transcript Variant: This variant (3) encodes the longer isoform (3)."[43]
  2. NP_443171.2 Fc receptor-like protein 3 isoform 1 precursor [variant 1].[43]

Gene ID: 343413 is FCRL6 Fc receptor like 6 on 1q23.2.[44]

  1. NP_001004310.2 Fc receptor-like protein 6 isoform 1 precursor: "Transcript Variant: This variant (1) represents the shorter transcript but encodes the longer protein (isoform 1)."[44]
  2. NP_001271146.1 Fc receptor-like protein 6 isoform 2: "Transcript Variant: This variant (2) differs in the 5' UTR and coding region compared to variant 1. The resulting protein (isoform 2) has a shorter N-terminus."[44]

Osteoclast genes

Gene ID: 126014 is OSCAR osteoclast associated Ig-like receptor on 19q13.42: "Osteoclasts are multinucleated cells that resorb bone and are essential for bone homeostasis. This gene encodes an osteoclast-associated receptor (OSCAR), which is a member of the leukocyte receptor complex protein family that plays critical roles in the regulation of both innate and adaptive immune responses. The encoded protein may play a role in oxidative stress-mediated atherogenesis as well as monocyte adhesion. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene."[45]

  1. NP_001269278.1 osteoclast-associated immunoglobulin-like receptor isoform 6 precursor: "Transcript Variant: This variant (6) lacks an in-frame exon in the central coding region, compared to variant 1. The encoded isoform (6) is shorter, compared to isoform 1."[45] smart00410 Location: 38 → 100 IG_like; Immunoglobulin like, cl11960 Location :31 → 124 Ig; Immunoglobulin domain.[45]
  2. NP_001269279.1 osteoclast-associated immunoglobulin-like receptor isoform 7 precursor: "Transcript Variant: This variant (7) lacks two in-frame exons in the central coding region, compared to variant 1. The encoded isoform (7) is shorter, compared to isoform 1."[45] smart00410 Location: 27 → 89 IG_like; Immunoglobulin like and cl11960 Location: 20 → 113 Ig; Immunoglobulin domain.[45]
  3. NP_570127.3 osteoclast-associated immunoglobulin-like receptor isoform 3 precursor: "Transcript Variant: This variant (3) lacks an internal segment in its 3' coding region, compared to variant 1. The encoded isoform (3) has a shorter and distinct C-terminus, compared to isoform 1."[45] smart00410 Location: 42 → 104 IG_like; Immunoglobulin like and cl11960 Location: 35 → 128 Ig; Immunoglobulin domain.[45]
  4. NP_573398.2 osteoclast-associated immunoglobulin-like receptor isoform 5 precursor: "Transcript Variant: This variant (5) lacks two in-frame exons in the central coding region and lacks an internal segment in its 3' coding region, compared to variant 1. The encoded isoform (5) is shorter and has a distinct C-terminus, compared to isoform 1."[45] smart00410 Location: 27 → 89 IG_like; Immunoglobulin like and cl11960 Location: 20 → 113 Ig; Immunoglobulin domain.[45]
  5. NP_573399.2 osteoclast-associated immunoglobulin-like receptor isoform 4 precursor: "Transcript Variant: This variant (4) lacks an in-frame exon in the central coding region and lacks an internal segment in its 3' coding region, compared to variant 1. The encoded isoform (4) is shorter and has a distinct C-terminus, compared to isoform 1."[45] smart00410 Location: 38 → 100 IG_like; Immunoglobulin like and cl11960 Location: 31 → 124 Ig; Immunoglobulin domain.[45]
  6. NP_996554.2 osteoclast-associated immunoglobulin-like receptor isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes the longest isoform (1)."[45] smart00410 Location: 42 → 104 IG_like; Immunoglobulin like and cl11960 Location: 35 → 128 Ig; Immunoglobulin domain.[45]

Immunoglobulin like domain genes

Gene ID: 286676 is ILDR1 immunoglobulin like domain containing receptor 1 on 3q13.33: "This gene encodes a protein that contains an immunoglobulin-like domain. The encoded protein may function as a multimeric receptor at the cell surface. The expression of this gene may be a diagnostic marker for cancer progression. Alternatively spliced transcript variants encoding multiple protein isoforms have been observed for this gene."[46]

  1. NP_001186728.1 immunoglobulin-like domain-containing receptor 1 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longest transcript and encodes the longest isoform (1)."[46] cl11960 Location: 39 → 166 Ig; Immunoglobulin domain.[46]
  2. NP_001186729.1 immunoglobulin-like domain-containing receptor 1 isoform 3 precursor: "Transcript Variant: This variant (3) lacks multiple exons in the coding region but maintains the reading frame, compared to variant 1. The encoded isoform (3) is shorter than isoform 1."[46]
  3. NP_787120.1 immunoglobulin-like domain-containing receptor 1 isoform 2 precursor: "Transcript Variant: This variant (2) lacks an exon in the coding region but maintains the reading frame, compared to variant 1. The encoded isoform (2) is shorter than isoform 1."[46] cl11960 Location: 39 → 166 Ig; Immunoglobulin domain.[46]

Gene ID: 340745 is LRIT2 leucine rich repeat, Ig-like and transmembrane domains 2 on 10q23.1.[47]

  1. NP_001017924.1 leucine-rich repeat, immunoglobulin-like domain and transmembrane domain-containing protein 2 isoform 2 precursor: "Transcript Variant: This variant (2) lacks an alternate in-frame exon in the 3' coding region, compared to variant 1. This results in a shorter protein (isoform 2), compared to isoform 1."[47]
  2. NP_001271152.1 leucine-rich repeat, immunoglobulin-like domain and transmembrane domain-containing protein 2 isoform 1 precursor: "Transcript Variant: This variant (1) represents the longer transcript and encodes the longer isoform (1)."[47]

Gene ID: 345193 is LRIT3 leucine rich repeat, Ig-like and transmembrane domains 3 on 4q25: "This gene encodes a protein that has a fibronectin type III domain and a C-terminal transmembrane domain, as well as a leucine-rich repeat domain and immunoglobulin-like domain near the N-terminus. The encoded protein may regulate fibroblast growth factor receptors and affect the modification of these receptors, which are glycosylated differently in the Golgi and endoplasmic reticulum. Mutations in this gene are associated with congenital stationary night blindness, type 1F."[48]

  1. NP_940908.3 leucine-rich repeat, immunoglobulin-like domain and transmembrane domain-containing protein 3 precursor.[48]

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

See also

References

  1. 1.0 1.1 1.2 RefSeq (July 2008). "CD79A CD79a molecule [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 14 May 2020.
  2. 2.0 2.1 2.2 2.3 2.4 RefSeq (July 2008). "CD79B CD79b molecule [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 14 May 2020.
  3. RefSeq (October 2009). "DCC DCC netrin 1 receptor [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  4. 4.0 4.1 4.2 4.3 RefSeq (July 2011). "FCER2 Fc fragment of IgE receptor II [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 April 2020.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 RefSeq (July 2008). "FCGR1A Fc fragment of IgG receptor Ia [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 April 2020.
  6. 6.0 6.1 6.2 6.3 6.4 RefSeq (October 2008). "FCGR2A Fc fragment of IgG receptor IIa [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 21 April 2020.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 RefSeq (June 2010). "FCGR2B Fc fragment of IgG receptor IIb [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 21 April 2020.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 RefSeq (July 2008). "FCGR3A Fc fragment of IgG receptor IIIa [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 April 2020.
  9. 9.0 9.1 RefSeq (July 2008). "KIR2DL1 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  10. 10.0 10.1 RefSeq (July 2008). "KIR2DL2 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  11. 11.0 11.1 RefSeq (July 2008). "KIR2DL3 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  12. 12.0 12.1 12.2 12.3 RefSeq (July 2016). "KIR2DL4 killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 4 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  13. 13.0 13.1 RefSeq (July 2008). "KIR2DS1 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 6 April 2020.
  14. 14.0 14.1 RefSeq (July 2008). "KIR2DS3 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 24 April 2020.
  15. 15.0 15.1 15.2 15.3 RefSeq (July 2008). "KIR2DS4 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 4 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  16. 16.0 16.1 RefSeq (July 2008). "KIR2DS5 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 5 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 28 April 2020.
  17. 17.0 17.1 17.2 RefSeq (July 2008). "KIR3DL1 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 April 2020.
  18. 18.0 18.1 18.2 RefSeq (June 2011). "KIR3DL2 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 27 April 2020.
  19. 19.0 19.1 19.2 19.3 RefSeq (August 2013). "KIR3DS1 killer cell immunoglobulin like receptor, three Ig domains and short cytoplasmic tail 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  20. 20.0 20.1 RefSeq (July 2008). "KIR3DL3 killer cell immunoglobulin like receptor, three Ig domains and long cytoplasmic tail 3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  21. 21.0 21.1 RefSeq (July 2008). "KIR2DL5B killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 5B [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  22. 22.0 22.1 22.2 22.3 22.4 22.5 RefSeq (April 2014). "KIR2DS2 killer cell immunoglobulin like receptor, two Ig domains and short cytoplasmic tail 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  23. 23.0 23.1 RefDSeq (July 2008). "IGHV3-30-3 immunoglobulin heavy variable 3-30-3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 May 2020.
  24. 24.0 24.1 24.2 24.3 24.4 24.5 24.6 RefSeq (January 2014). "LAIR1 leukocyte associated immunoglobulin like receptor 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  25. 25.0 25.1 25.2 RefSeq (September 2013). "LAIR2 leukocyte associated immunoglobulin like receptor 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  26. 26.0 26.1 26.2 26.3 26.4 26.5 26.6 RefSeq (July 2008). "LILRB2 leukocyte immunoglobulin like receptor B2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 28 April 2020.
  27. 27.0 27.1 27.2 27.3 27.4 27.5 27.6 RefSeq (July 2008). "LILRB1 leukocyte immunoglobulin like receptor B1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 23 April 2020.
  28. 28.0 28.1 28.2 28.3 28.4 RefSeq (July 2008). "LILRB5 leukocyte immunoglobulin like receptor B5 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 15 May 2020.
  29. 29.0 29.1 29.2 29.3 29.4 29.5 RefSeq (July 2008). "LILRB4 leukocyte immunoglobulin like receptor B4 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 15 May 2020.
  30. 30.0 30.1 30.2 30.3 RefSeq (May 2013). "LILRA1 leukocyte immunoglobulin like receptor A1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 15 May 2020.
  31. 31.0 31.1 31.2 31.3 RefSeq (July 2008). "LILRB3 leukocyte immunoglobulin like receptor B3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 15 May 2020.
  32. 32.0 32.1 32.2 RefSeq (March 2014). "LILRA3 leukocyte immunoglobulin like receptor A3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 15 May 2020.
  33. 33.0 33.1 33.2 33.3 33.4 RefSeq (March 2014). "LILRA2 leukocyte immunoglobulin like receptor A2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 15 May 2020.
  34. 34.0 34.1 RefSeq (January 2015). "LILRA4 leukocyte immunoglobulin like receptor A4 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 May 2020.
  35. 35.0 35.1 35.2 35.3 35.4 RefSeq (July 2008). "LILRA5 leukocyte immunoglobulin like receptor A5 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  36. 36.0 36.1 RefSeq (September 2009). "PIGR polymeric immunoglobulin receptor [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  37. 37.0 37.1 37.2 37.3 RefSeq (April 2015). "HAVCR1 hepatitis A virus cellular receptor 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 April 2020.
  38. 38.0 38.1 RefSeq (September 2011). "HAVCR2 hepatitis A virus cellular receptor 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 22 April 2020.
  39. 39.0 39.1 39.2 RefSeq (April 2009). "FCRL2 Fc receptor like 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 20 April 2020.
  40. 40.0 40.1 40.2 RefSeq (September 2010). "FCRL5 Fc receptor like 5 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 20 April 2020.
  41. 41.0 41.1 RefSeq (April 2009). "FCRL4 Fc receptor like 4 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 20 April 2020.
  42. 42.0 42.1 42.2 42.3 RefSeq (April 2009). "FCRL1 Fc receptor like 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 20 April 2020.
  43. 43.0 43.1 43.2 RefSeq (February 2016). "FCRL3 Fc receptor like 3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  44. 44.0 44.1 44.2 RefSeq (13 March 2020). "FCRL6 Fc receptor like 6 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 21 April 2020.
  45. 45.00 45.01 45.02 45.03 45.04 45.05 45.06 45.07 45.08 45.09 45.10 45.11 45.12 RefSeq (August 2013). "OSCAR osteoclast associated Ig-like receptor [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  46. 46.0 46.1 46.2 46.3 46.4 46.5 RefSeq (December 2010). "ILDR1 immunoglobulin like domain containing receptor 1 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  47. 47.0 47.1 47.2 RefSeq (13 March 2020). "LRIT2 leucine rich repeat, Ig-like and transmembrane domains 2 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.
  48. 48.0 48.1 RefSeq (May 2013). "LRIT3 leucine rich repeat, Ig-like and transmembrane domains 3 [ Homo sapiens (human) ]". 8600 Rockville Pike, Bethesda MD, 20894 USA: National Center for Biotechnology Information, U.S. National Library of Medicine. Retrieved 16 April 2020.

External links

Template:Sisterlinks