Hereditary spherocytosis

Jump to navigation Jump to search

Template:DiseaseDisorder infobox

Hereditary spherocytosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hereditary spherocytosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hereditary spherocytosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hereditary spherocytosis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hereditary spherocytosis

CDC on Hereditary spherocytosis

Hereditary spherocytosis in the news

Blogs on Hereditary spherocytosis

Directions to Hospitals Treating Hereditary spherocytosis

Risk calculators and risk factors for Hereditary spherocytosis

For patient information click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Hereditary spherocytosis is a genetically-transmitted form of spherocytosis, an auto-hemolytic anemia characterized by the production of red blood cells that are sphere-shaped rather than donut-shaped, and therefore more prone to hemolysis.

Historical Perspective

  • Towards the end of the nineteenth century Vanlair and Masius described the case of a young woman who developed icterus, recurrent attacks of left upper quadrant abdominal pain and splenomegaly shortly after giving birth. The stools were not light coloured, but rather deeply pigmented. The patient's mother and sister were also icteric, and the sister's spleenwas enlarged.

Classification

  • Hereditary Spherocytosis classified on basis of underlying defect in protein and also on the basis of severity of hemolysis.

Pathophysiology

There is intrinsic defects in erythrocyte membrane proteins that result in RBC cytoskeleton instability. Loss of erythrocyte surface area leads to the spherical shape of RBCs (spherocytes), which are culled rapidly from the circulation by the spleen. Hemolysis mainly confined to the spleen and, therefore, is extravascular. Splenomegaly commonly develops.

The following four abnormalities in RBC membrane proteins have been identified in HS:

Causes

Differentiating Hereditary spherocytosis overview from Other Diseases

Epidemiology and Demographics

  • HS is seen in all populations but appears to be especially common in people of northern European ancestry.
  • In the United States, the incidence of the disorder is approximately one case in 5000 people.
    • In northern European, HS affects as many as 1 in 2000 to 1 in 5000 (prevalence, approximately 0.02 to 0.05 percent).

Risk Factors

  • The risk factors for this condition have not yet been properly identified.
  • However, having a family member with this condition can increase your susceptibility to this disease. The condition is also most common in individuals of North European origin although it has been found to arise in people of all races.

Screening

  • It is also important to test newborns of affected parents for HS, as affected newborns may have severe hyperbilirubinemia and anemia. This may be done by a clinician with expertise in hemolytic anemias or by a genetic counselor. It is possible for an individual with no hemolysis, no spherocytes on the blood smear, and a normal reticulocyte count to be a carrier of HS, which may be relevant in certain families.

Natural History, Complications, and Prognosis

Natural History

  • Disease severity and age of presentationHS can present at any age and with any severity, with case reports describing a range of presentations, from hydrops fetalis in utero through diagnosis in the ninth decade of life.

Complications

Common complications of hemolysis include neonatal jaundice, splenomegaly, and pigment gallstones.

  • Neonatal jaundiceHS may present in the neonatal period with jaundice and hyperbilirubinemia, and the serum bilirubin level may not peak until several days after birth. Some experts have proposed that HS is underdiagnosed as a cause of neonatal jaundice. A requirement for phototherapy and/or exchange transfusion during this period is common.
  • SplenomegalySplenomegaly is rare in neonates, but can often be seen in older children and adults with HS. Early reports of family studies found palpable spleens in over three-fourths of affected members, but this may reflect a skewed population with the most severe disease. In these studies, the relationship between disease severity and splenic size was not linear.
  • Pigment gallstones — Pigment (bilirubin) gallstones are common in individuals with HS and may be the presenting finding in adults. Gallstones are unlikely before the age of 10 years but are seen in as many as half of adults, especially those with more severe hemolysis. Gallstones appear to be more common in individuals with Gilbert syndrome.

Prognosis

  • Overall, the long-term outlook for people with hereditary spherocytosis (HS) is usually good with treatment. However, it may depend on the severity of the condition in each person.
  • People with very mild HS may not have any signs or symptoms unless an environmental "trigger" causes symptom onset. In many cases, no specific therapy is needed other than monitoring for  and watching for signs and symptoms.[8] Moderately and severely affected people are likely to benefit from splenectomy.
  • Most people who undergo splenectomy are able to maintain a normal hemoglobin level.[4] However, people with severe HS may remain anemic post-splenectomy, and may need blood transfusions during an infection.

Diagnosis

Diagnostic Criteria

  1. Newly diagnosed patients with a family history of HS, typical clinical features and laboratory investigations (spherocytes, raised mean corpuscular haemoglobin concentration [MCHC], increase in reticulocytes) do not require any additional tests (grade 1 recommendation, grade A evidence).
  2.  If the diagnosis is equivocal, a screening test with high predictive value for HS is helpful. The recommended screening tests are the cryohaemolysis test and EMA binding (grade 1 recommendation, grade A evidence). (Confirmation).
  3.  Gel electrophoresis analysis of erythrocyte membranes is the method of choice for diagnosis of atypical cases.

History and Symptoms

Physical Examination

  • Splenomegaly is the rule in HS. Palpable spleens have been detected in more than 75% of affected subjects. The liver is normal in size and function.
  • Other important clues are jaundice and upper right abdominal pain indicative of gallbladder disease. This is especially important if the patient has a family history of gallbladder disease.
  • Any patient who presents with profound and sudden anemia and reticulocytopenia with the aforementioned physical findings also should have HS in the differential diagnosis.

Laboratory Findings

Initial testing

Confirmatory tests

  • EMA bindingOsmotic fragility ●Glycerol lysisCryohemolysis

Imaging Findings:

  • There are no particular other imaging findings associated with HS.

Other Diagnostic Studies:

    • In certain atypical cases in which further characterization of the RBC cytoskeletal/membrane proteins is needed, gel electrophoresis can be done using RBC ghosts, or DNA sequencing can be performed.

Treatment

Medical Therapy

  • As with most inherited hemolytic anemias, treatment is directed at preventing or minimizing complications of chronic hemolysis and anemia. There are no specific treatments directed at the underlying red blood cell (RBC) membrane defect.
  • If a neonate is suspected of having HS (eg, based on positive family history and neonatal jaundice), treatment can be initiated for HS without awaiting diagnostic confirmation. This may include therapy for hyperbilirubinemia and, in severe cases, transfusion or even exchange transfusion [83
  • The goals of pharmacotherapy for hereditary spherocytosis are to reduce morbidity and prevent complications. Folic acid supplementation is indicated to prevent megaloblastic crisis.

Surgery

  • Generally, the treatment of HS involves presplenectomy care, splenectomy, and management of postsplenectomy complications.
  • In pediatric cases, splenectomy ideally should not be performed until a child is older than 6 years because of the increased incidence of postsplenectomy infections with encapsulated organisms such as S pneumoniae and H influenzae in young children.
  • Partial splenectomies are increasingly used in pediatric patients, as this approach appears to both control hemolysis and preserve splenic function.

Prevention

In general, once the diagnosis and baseline severity of HS in a child are established, it is not necessary to perform repeated blood tests unless there is an additional clinical indication (such as intercurrent infection and pallor, or an increase in jaundice). A routine annual review is usually sufficient together with an open door policy for potential complications such as parvovirus infection, or abdominal pain, which may trigger investigation for gallstones.

Case Studies

Case #1

Related Chapters

Template:Otheruses4

External links

he:ספרוציטוזיס תורשתי sr:Сфероцитоза

Template:WikiDoc Sources