Heparin-induced thrombocytopenia: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 5: Line 5:


==[[Heparin-induced thrombocytopenia classification | Classification]]==
==[[Heparin-induced thrombocytopenia classification | Classification]]==
There are two forms of HIT. Type II HIT is the main adverse effect of heparin use.
===Type I===
In this form patients characteristically have a transient decrease in platelet count (rarely <100,000) without any further symptoms. This thrombocytopenia recovers even if heparin is continued to be administered. It occurs in 10-20% of all patients on heparin. It is not due to an immune reaction and antibodies are not found upon investigation.  HIT-1 is due to heparin-induced platelet clumping; it is innocuous. 
===Type II===
This form is due to an [[autoimmune disorder|autoimmune]] reaction with antibodies formed against platelet factor 4 (PF4), neutrophil-activating peptide 2 (NAP-2) and [[IL-8|interleukin 8]] (IL8) which form complexes with heparin. The most common form is to the heparin-PF4 complex. It appears that heparin binding to platelet factor 4 causes a conformational change in the protein, rendering it [[antigen|antigenic]]. Antibodies bind to these complexes, activate the surrounding platelets and generate thrombin.  The antibodies found are most commonly are of the [[IgG]] class with or without [[IgM]] and [[IgA]] class antibodies. IgM and IgA are rarely found without IgG antibodies. Type II [[HIT]] develops in about 3% of all patients on UFH and in 0.1% of patients on [[LMWH]], and causes thrombosis in 30% to 40% of these patients. The other patients are able to compensate for the activation of [[hemostasis|hemostasis]] that leads to thrombosis. Clot formation is mainly arterial and rich in [[platelets]] ("white clot syndrome"), in contrast with fibrin-rich clots (which are red due to trapped [[red blood cells]]). Most thrombotic events are in the lower limbs, skin lesions and necrosis may also occur at the site of the heparin infusion.  Rapid-onset HIT can result in life-threatening acute systemic reactions (eg rigors, fever, hypertension, tachycardia) and cardiopulmonary collapse. 
Delayed-onset HIT occurs in ~3-5% of HIT cases; patients who develop delayed onset HIT have heparin/PF4 reactive antibodies that are able to activate platelets even in the absence of heparin.  Single or trivial doses of heparin, such as catheter flushes, can cause HIT.  In HIT2 the onset of thrombocytopenia is independent of the type of heparin, dose and route of administration. HIT antibodies can persist for 4-6 weeks but disappear after 3 months. 
The presence of HIT antibodies, even at higher titer, doesn't predict an increase in complications.  An increase in the titers of the antibodies do, however, give an increase in the in-vitro activaton of the coagulation system.  The ELISA test, though not ideal, is the best predictive diagnostic test of HIT2.  It has been suggested that HIT2 only occurs with high  antibody titers and after persistent exposure to heparin; also it suggests that antigens different from the H-PF4 complex can be involved.  There may be a HIT antibody active in a non-heparin dependent manner.  Data exists suggesting that there are "superactive" HIT antibodies capable of activating platelets without heparin. 


==[[Heparin-induced thrombocytopenia risk factors| Risk Factors]]==
==[[Heparin-induced thrombocytopenia risk factors| Risk Factors]]==
Genetic risk factors for thrombosis such as [[factor V Leiden]], [[prothrombin]] gene mutation, [[methylenetetrahydrofolate reductase]] ([[MTHFR]]) polymorphism and platelet-receptor polymorphisms do not increase the risk of developing HIT associated thrombosis.
Genetic risk factors for thrombosis such as [[factor V Leiden]], [[prothrombin]] gene mutation, [[methylenetetrahydrofolate reductase]] ([[MTHFR]]) polymorphism and platelet-receptor polymorphisms do not increase the risk of developing HIT associated thrombosis.



Revision as of 17:28, 4 December 2011

Heparin-induced thrombocytopenia

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Heparin-induced thrombocytopenia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Echocardiography and Ultrasound

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Heparin-induced thrombocytopenia On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Heparin-induced thrombocytopenia

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Heparin-induced thrombocytopenia

CDC on Heparin-induced thrombocytopenia

Heparin-induced thrombocytopenia in the news

Blogs on Heparin-induced thrombocytopenia

Directions to Hospitals Treating Heparin-induced thrombocytopenia

Risk calculators and risk factors for Heparin-induced thrombocytopenia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2], Aric C. Hall, M.D., [3]

Overview

Classification

Risk Factors

Genetic risk factors for thrombosis such as factor V Leiden, prothrombin gene mutation, methylenetetrahydrofolate reductase (MTHFR) polymorphism and platelet-receptor polymorphisms do not increase the risk of developing HIT associated thrombosis.

4 factors that affect the risk of developing HIT are noted as follows.[1] 1) Duration of heparin treatment; long duration, up to 2 weeks is associated with the greatest risk. 2) The type of heparin involved; UFH has a greater risk than LMWH. 3) The type of patient; surgical patients are at higher risk than medical; cardiac surgical patients have the highest risk of all. 4) Females have a higher risk.

CPB bypass: The management of cardiopulmonary bypass (CPB) patients with active HIT is controversial. Direct Thrombin Inhibitors such as agatroban and hirudin are used (and increase the aPTT in a dose dependent manner). However, in the large doses required for CPB hirudin's effects cannot be monitored well. Following CPB surgery the platelet count drops to about 40-60% of normal within the first 2-3 days postop due to hemodilution and platelet consumption. But there is also a risk of HIT. 20-50% of patients develop heparin antibodies during the first 5-10 days following CPB and some develop HIT (1-3% if UFH is continued through the postop period).

Diagnosis

History and symptoms

Lab tests

Treatment

Treatment is by prompt withdrawal of heparin and replacement with a suitable alternative anticoagulant. To block the thrombotic state, lepirudin, fondaparinux, bivalirudin, argatroban, danaparoid or other direct thrombin inhibitors are used. Low molecular weight heparin is deemed contraindicated in HIT.

According to past reviews, patients treated with lepirudin for heparin-induced thrombocytopenia showed a relative risk reduction of clinical outcome (death, amputation, etc.) to be 0.52 and 0.42 when compared to patient controls. In addition, patients treated with argatroban for HIT showed a relative risk reduction of the above clinical outcomes to be 0.20 and 0.18. [2]

Pharmacotherapy

Acute Pharmacotherapies

  • Check platelet counts twice weekly while on heparin. Withdrawal heparin immediately of HIT is suspected. Platelet transfusion worsens thrombosis and should be reserved for patients with active bleeding. Warfarin therapy should be avoided for 3-5 days after heparin cessation and/or until thrombocytopenia resolves (>100,000).
  • Use of direct thrombin inhibitors is the safest and most effective therapeutic approach to HIT for both those who need ongoing anticoagulation and for thrombosis prevention.

Danaproid (Orgaran) is a heparinoid composed of 85% heparan sulphate, 10% dermatan sulphate and 5% chondroitin sulphate that has approximately 10% cross reactivity with heparin. It has been shown to reduce mortality from thrombotic complications to 5% from 28%.

  • The in vitro cross reactivity of LMWH with heparin dependent antibodies is approximately 60-100%. Some argue that LMWH is contraindicated for patients who develop HIT because of this cross-reactivity. Nonetheless, a theoretical argument for the use of LMWH in therapy for HIT has been made. The theory is that the LMWH overall interaction of heparin with PF4 will diminish. Though there are reports of LMWH being effective in controlling HIT in the presence of cross-reacting antibodies, the consensus is not to administer LMWH unless the absence of cross reactivity has been determined.

As stated before when HIT is suspected it is recommended to discontinue the heparin and initiate other agents such as direct thrombin inhibitors (DTIs; agatroban, hirudin & bivalirudin). Agatroban (AKA Novastan) doesn't resemble heparin and therefore won't cross-react with heparin antibodies. It is a medication specifically designed as a synthetic intravenous thrombin inhibitor, derived from arginine, to be an anticoagulant in patients with HIT. It is hepatically eliminated (t1/2 = 1 hour). It is contraindicated in patients with problems of hemorrhage and one should avoid intramuscular injections during its use. The infusion is initiated at 2 ug/kg/min; in patients with hepatic impairment it is recommended to reduce the dose to 0.5 ug/kg/min. Adjustment is made to a steady state aPTT of 1.5-3X the baseline. With this regimen greater than half of patients had platelet counts recover by day 3 (in HIT). Abrupt discontinuation of agatroban can lead to a hypercoagulable state. With administration its effects are immediate and a steady state can be achieved in 1-3 hours. When agatroban is given it is advised to begin coumadin. When the INR is >4 discontinue the agatroban and recheck the INR 4-6 hours later. If the INR is below the therapeutic range then resume agatroban. Avoid prothrombotic problems by overlapping the coumadin and agatroban. It has no cross-reactivity with HIT antibodies (to PF4). There is no antibody formation after repeated administration. It does not require dose adjustment in renal impairment. Lepirudin is a DTI but, unlike agatroban, it is eliminated by the kidneys. Hirudin binds to the active site of thrombin by exosite 1, the site at which thrombin binds to its substrates. Bivalrirudin, like hirudin, binds to the active site of thrombin/exostie 1.

Coumadin (and vitamin K antagonists generally) are recommended for long-term anticoagulation however they should not be administered too early, unopposed or in excessive doses. It is important not to initiate coumadin treatment until the platelet count has recovered due to the threat of skin necrosis or gangrene. Discontinuing the heparin and giving Coumadin doesn't prevent the onset of thrombosis in ~50% of patients. Once thrombocytopenia has resolved the coumadin can then be given at a low maintenance dose and alternative anticoagulation should be continued along with coumadin for at least 5 days. The alternative anticoagulant should not be discontinued until the platelet count has achieved a stable plateau and the INR has been the therapeutic range for at least 2 days. The optimal duration of the anticoagulation has not been established.


Patients Undergoing Surgery or PCI

Patients with HIT should be treated with Bivalirudin, a direct thrombin inhibitor to support these procedures.

Secondary Prevention

Patients with HIT should be treated with Bivalirudin, a direct thrombin inhibitor to support future procedures.

Reference

  1. Warkentin TE, Sheppard JA, Sigouin CS, Kohlmann T, Eichler P, Greinacher A. Gender imbalance and risk factor interactions in heparin-induced thrombocytopenia. Blood 2006;108:2937-41. PMID 16857993.
  2. Hirsh J, Heddle N, Kelton J (2004). "Treatment of heparin-induced thrombocytopenia: a critical review". Arch Intern Med. 164 (4): 361–9. PMID 14980986. .

External links

Additional Reading

  • Aouifi A, Blanc P, Piriou V, Bastien OH, French P, Hanss M, Lehot JJ. Cardiac surgery with cardiopulmonary bypass in patients with type II heparin-induced thrombocytopenia. Ann Thoracic Surg 2001;71:678-683.
  • Follis F, Filippone G, Montalbano G, Floriano M, LoBianco E, D'Ancona G, Follis M. Argatroban as a substitute of heparin during cardiopulmonary bypass: a safe alternative? Interact CardioVas Thorac Surg 2010;10:592-596.
  • Gates R, Yost P, Parker B. The use of bivalirudin for cardiopulmonary bypass anticoagulation in pediatric heparin-induced thrombocytpenia patients. Artificial Organs. 2010;34(8):667-669.

de:Heparin-induzierte Thrombozytopenie it:Trombocitopenia indotta da eparina

Template:WH Template:WS