HDAC9

Revision as of 17:59, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Histone deacetylase 9
Identifiers
Symbols HDAC9 ; DKFZp779K1053; HD7; HDAC; HDAC7; HDAC7B; HDAC9B; HDAC9FL; HDRP; KIAA0744; MITR
External IDs Template:OMIM5 Template:MGI HomoloGene64351
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Histone deacetylase 9, also known as HDAC9, is a human gene.[1]

Histones play a critical role in transcriptional regulation, cell cycle progression, and developmental events. Histone acetylation/deacetylation alters chromosome structure and affects transcription factor access to DNA. The protein encoded by this gene has sequence homology to members of the histone deacetylase family. This gene is orthologous to the Xenopus and mouse MITR genes. The MITR protein lacks the histone deacetylase catalytic domain. It represses MEF2 activity through recruitment of multicomponent corepressor complexes that include CtBP and HDACs. This encoded protein may play a role in hematopoiesis. Multiple alternatively spliced transcripts have been described for this gene but the full-length nature of some of them has not been determined.[1]

See also

References

  1. 1.0 1.1 "Entrez Gene: HDAC9 histone deacetylase 9".

Further reading

  • Marks PA, Richon VM, Rifkind RA (2000). "Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells". J. Natl. Cancer Inst. 92 (15): 1210–6. PMID 10922406.
  • Verdin E, Dequiedt F, Kasler HG (2003). "Class II histone deacetylases: versatile regulators". Trends Genet. 19 (5): 286–93. PMID 12711221.
  • "Toward a complete human genome sequence". Genome Res. 8 (11): 1097–108. 1999. PMID 9847074.
  • Nagase T, Ishikawa K, Suyama M; et al. (1999). "Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 5 (5): 277–86. PMID 9872452.
  • Sparrow DB, Miska EA, Langley E; et al. (1999). "MEF-2 function is modified by a novel co-repressor, MITR". EMBO J. 18 (18): 5085–98. doi:10.1093/emboj/18.18.5085. PMID 10487760.
  • Miska EA, Karlsson C, Langley E; et al. (1999). "HDAC4 deacetylase associates with and represses the MEF2 transcription factor". EMBO J. 18 (18): 5099–107. doi:10.1093/emboj/18.18.5099. PMID 10487761.
  • Wang AH, Bertos NR, Vezmar M; et al. (1999). "HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor". Mol. Cell. Biol. 19 (11): 7816–27. PMID 10523670.
  • Zhou X, Richon VM, Rifkind RA, Marks PA (2000). "Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1056–61. PMID 10655483.
  • Youn HD, Grozinger CM, Liu JO (2000). "Calcium regulates transcriptional repression of myocyte enhancer factor 2 by histone deacetylase 4". J. Biol. Chem. 275 (29): 22563–7. doi:10.1074/jbc.C000304200. PMID 10825153.
  • Zhang CL, McKinsey TA, Lu JR, Olson EN (2001). "Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor". J. Biol. Chem. 276 (1): 35–9. doi:10.1074/jbc.M007364200. PMID 11022042.
  • Fischle W, Dequiedt F, Fillion M; et al. (2001). "Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo". J. Biol. Chem. 276 (38): 35826–35. doi:10.1074/jbc.M104935200. PMID 11466315.
  • Zhou X, Marks PA, Rifkind RA, Richon VM (2001). "Cloning and characterization of a histone deacetylase, HDAC9". Proc. Natl. Acad. Sci. U.S.A. 98 (19): 10572–7. doi:10.1073/pnas.191375098. PMID 11535832.
  • Koipally J, Georgopoulos K (2002). "Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression". J. Biol. Chem. 277 (26): 23143–9. doi:10.1074/jbc.M202079200. PMID 11959865.
  • Kirsh O, Seeler JS, Pichler A; et al. (2002). "The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase". EMBO J. 21 (11): 2682–91. doi:10.1093/emboj/21.11.2682. PMID 12032081.
  • Mahlknecht U, Schnittger S, Will J; et al. (2002). "Chromosomal organization and localization of the human histone deacetylase 9 gene (HDAC9)". Biochem. Biophys. Res. Commun. 293 (1): 182–91. doi:10.1016/S0006-291X(02)00193-6. PMID 12054582.
  • Zhang CL, McKinsey TA, Olson EN (2002). "Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation". Mol. Cell. Biol. 22 (20): 7302–12. PMID 12242305.
  • Hoogeveen AT, Rossetti S, Stoyanova V; et al. (2002). "The transcriptional corepressor MTG16a contains a novel nucleolar targeting sequence deranged in t (16; 21)-positive myeloid malignancies". Oncogene. 21 (43): 6703–12. doi:10.1038/sj.onc.1205882. PMID 12242670.
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.
  • Petrie K, Guidez F, Howell L; et al. (2003). "The histone deacetylase 9 gene encodes multiple protein isoforms". J. Biol. Chem. 278 (18): 16059–72. doi:10.1074/jbc.M212935200. PMID 12590135.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain. Template:WikiDoc Sources