Fragile X syndrome: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 32: Line 32:
The fragile X syndrome is a [[genetic disorder]] caused by [[mutation]] of the [[FMR1]] [[gene]] on the [[X chromosome]]. Mutation at that site is found in 1 out of about every 2000 [[male]]s and 1 out of about every 259 [[female]]s. (Incidence of the disease itself is about 1 in every 4000 females.)
The fragile X syndrome is a [[genetic disorder]] caused by [[mutation]] of the [[FMR1]] [[gene]] on the [[X chromosome]]. Mutation at that site is found in 1 out of about every 2000 [[male]]s and 1 out of about every 259 [[female]]s. (Incidence of the disease itself is about 1 in every 4000 females.)


Normally, the [[FMR1]] gene contains between 6 and 55 repeats of the CGG [[codon]] ([[Trinucleotide repeat disorders|trinucleotide repeats]]). In people with the fragile X syndrome, the FMR1 [[allele]] has over 230 repeats of this codon.   
'''FMR1'' is divided into four allelic classes based on the number of CGG repeats present in the 5' untranslated region (5'UTR): 1.) Common alleles with 40 or less repeats 2.) Intermediate alleles with 41-54 repeats 3.) Premutation alleles with 55-200 repeats 4.) Full mutation alleles with greater than 200 repeats. Common, intermediate, and premutation alleles are normally unmethylated in the 5'UTR and FMR1 is transcriptionally active. Premutation alleles often have increased transcriptional activityFull mutation alleles are usually hypermethylated in the 5'UTR and transcriptionally inactive.


Expansion of the CGG repeating codon to such a degree results in a [[DNA methylation|methylation]] of that portion of the [[DNA]], effectively silencing the expression of the FMR1 [[protein]].   
Expansion of the CGG repeating codon to such a degree results in a [[DNA methylation|methylation]] of that portion of the [[DNA]], effectively silencing the expression of the FMR1 [[protein]].   

Revision as of 21:20, 27 December 2009

Fragile X syndrome
Location of FMR1 gene
ICD-10 Q99.2
ICD-9 759.83
OMIM 309550
DiseasesDB 4973
eMedicine ped/800 
MeSH D005600

WikiDoc Resources for Fragile X syndrome

Articles

Most recent articles on Fragile X syndrome

Most cited articles on Fragile X syndrome

Review articles on Fragile X syndrome

Articles on Fragile X syndrome in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Fragile X syndrome

Images of Fragile X syndrome

Photos of Fragile X syndrome

Podcasts & MP3s on Fragile X syndrome

Videos on Fragile X syndrome

Evidence Based Medicine

Cochrane Collaboration on Fragile X syndrome

Bandolier on Fragile X syndrome

TRIP on Fragile X syndrome

Clinical Trials

Ongoing Trials on Fragile X syndrome at Clinical Trials.gov

Trial results on Fragile X syndrome

Clinical Trials on Fragile X syndrome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Fragile X syndrome

NICE Guidance on Fragile X syndrome

NHS PRODIGY Guidance

FDA on Fragile X syndrome

CDC on Fragile X syndrome

Books

Books on Fragile X syndrome

News

Fragile X syndrome in the news

Be alerted to news on Fragile X syndrome

News trends on Fragile X syndrome

Commentary

Blogs on Fragile X syndrome

Definitions

Definitions of Fragile X syndrome

Patient Resources / Community

Patient resources on Fragile X syndrome

Discussion groups on Fragile X syndrome

Patient Handouts on Fragile X syndrome

Directions to Hospitals Treating Fragile X syndrome

Risk calculators and risk factors for Fragile X syndrome

Healthcare Provider Resources

Symptoms of Fragile X syndrome

Causes & Risk Factors for Fragile X syndrome

Diagnostic studies for Fragile X syndrome

Treatment of Fragile X syndrome

Continuing Medical Education (CME)

CME Programs on Fragile X syndrome

International

Fragile X syndrome en Espanol

Fragile X syndrome en Francais

Business

Fragile X syndrome in the Marketplace

Patents on Fragile X syndrome

Experimental / Informatics

List of terms related to Fragile X syndrome

For patient information click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [2] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.

Overview

Fragile X syndrome is a syndrome of X-linked mental retardation. Boys with the syndrome may have large testicles (macroorchidism), prognathism, hypotonia and autism, and a characteristic but variable face with large ears, long face, high-arched palate, gynecomastia, and malocclusion. Additional abnormalities may include lordosis, heart defect, pectus excavatum, flat feet, shortening of the tubular bones of the hands, and joint laxity. Females who have one fragile chromosome and one normal X chromosome may range from normal to mild manifestations of the fragile X syndrome. The fragile X syndrome has an estimated incidence of 1 in 3600 males and 1 in 4,000–6,000 females. [1]

Martin and Bell in 1943, described a pedigree of X-linked mental disability, without considering the macroorchidism.[2] In 1969 Chris and Weesam first sighted an unusual "marker X chromosome" in association with mental disability.[3] In 1970 Frederick Hecht coined the term "fragile site" (Renpenning's syndrome is not synonymous with the Martin-Bell (fragile X) syndrome). In Renpennig's syndrome there is no fragile site on the X chromosome. Renpenning’s cases had short stature, moderate microcephaly, and neurological disorders.

Escalante's syndrome is synonymous with the fragile X syndrome. This term has been used in Brazil and other South American countries.

Causes

X-linked recessive inheritance

The fragile X syndrome is a genetic disorder caused by mutation of the FMR1 gene on the X chromosome. Mutation at that site is found in 1 out of about every 2000 males and 1 out of about every 259 females. (Incidence of the disease itself is about 1 in every 4000 females.)

'FMR1 is divided into four allelic classes based on the number of CGG repeats present in the 5' untranslated region (5'UTR): 1.) Common alleles with 40 or less repeats 2.) Intermediate alleles with 41-54 repeats 3.) Premutation alleles with 55-200 repeats 4.) Full mutation alleles with greater than 200 repeats. Common, intermediate, and premutation alleles are normally unmethylated in the 5'UTR and FMR1 is transcriptionally active. Premutation alleles often have increased transcriptional activity. Full mutation alleles are usually hypermethylated in the 5'UTR and transcriptionally inactive.

Expansion of the CGG repeating codon to such a degree results in a methylation of that portion of the DNA, effectively silencing the expression of the FMR1 protein.

This methylation of the FMR1 locus in chromosome band Xq27.3 is believed to result in constriction of the X chromosome which appears 'fragile' under the microscope at that point, a phenomenon that gave the syndrome its name.

Mutation of the FMR1 gene leads to the transcriptional silencing of the fragile X-mental retardation protein, FMRP. In normal individuals, FMRP binds and facilitates the translation of a number of essential neuronal RNAs. In fragile X patients, however, these RNAs are not translated into proteins.

Transmission of the Fragile X

The diagram (right) of X-linked recessive inheritance is not entirely inappropriate but it markedly oversimplifies the situation and does not provide a sufficient foundation for genetic counseling about the fragile X syndrome. Technically, fragile X syndrome is an X-linked dominant condition with reduced penetrance.

Because males normally have only one copy of the X chromosome, those males with significant trinucleotide expansion at the FMR1 locus are symptomatic. They are intellectually disabled and may show various physical features of the fragile X syndrome.

Females have two X chromosomes and thus have double the chance of having a working FMR1 allele. Females carrying one X chromosome with an expanded FMR1 gene can have some signs and symptoms of the disorder or be normal. Although the extra X chromosome can serve as a backup, only one X chromosome is active at a time due to X-inactivation.

Males with the fragile X cannot transmit it to any of their sons (since males contribute a Y chromosome, not an X, to their male offspring), but will transmit it to all of their daughters, as males contribute their X to all of their daughters.

Females carrying one copy of the fragile X can transmit it to their sons or daughters; in this case each child has a 50% chance of inheriting the fragile X. Sons who receive the fragile X are at high risk of intellectual disability. Daughters who receive the fragile X may appear normal or they may be intellectually disabled, usually to a lesser degree than boys with the syndrome. The transmission of fragile X often increases with each passing generation. This seemingly anomalous pattern of inheritance is referred to as the Sherman paradox.

Symptoms

File:Fragile x syndrom.png Aside from intellectual disability, prominent characteristics of the syndrome include an elongated face, large or protruding ears, flat feet, larger testicles in men (macroorchidism), and low muscle tone. Speech may include cluttered speech or nervous speech[4]. Behavioral characteristics may include stereotypic movements (e.g., hand-flapping) and atypical social development, particularly shyness and limited eye contact. Some individuals with the fragile X syndrome also meet the diagnostic criteria for autism. Most females experience symptoms to a lesser degree because of their second X-chromosome, however they can develop just as severe symptoms. While full mutation males tend to present with severe intellectual disability, the symptoms of full mutation females runs the gamut of minimally affected to severe intellectual disability, which may explain why females are underdiagnosed relative to males.

Diagnosis

Fragile X syndrome was originally diagnosed by culturing cells in a folate deficient medium and then assessing the cultures for X-chromosome breakage by cytogenetic analysis of the long arm of the X chromosome. This technique proved unreliable for both diagnosis and carrier testing.

The fragile X abnormality is now directly determined by analysis of the number of CGG repeats and their methylation status using restriction endonuclease digestion and Southern blot analysis.

Treatment and current research

Recent studies have focused on a number of critical areas. The role of FMRP's RNA partners, many of which have now been validated through in vitro assays, is of primary importance. Also being examined is the function the various domains of FMRP, an RNA-binding protein, which is still relatively unknown. One hypothesis is that many symptoms are caused by unchecked activation of mGluR5, a metabotropic glutamate receptor, which was found in a 2007 study to contribute significantly to the pathogenesis of the disease;[5] this suggests that mGluR5 blockers could be used to treat fragile X syndrome.[6]

While there is no current cure for the syndrome, there is hope that further understanding of its underlying causes would lead to new therapies. Currently, the syndrome can be treated through behavioral therapy, special education, medication, and when necessary, treatment of physical abnormalities. Persons with the fragile X syndrome in their family histories are advised to seek genetic counseling to assess the likelihood of having children who are affected, and how severe any impairments may be in affected descendants.

Researchers at the Picower Institute for Learning and Memory at MIT have reversed symptoms of mental retardation and autism in mice.[7]

References

  1. Crawford, D.C.; Acuna, J.M. & Sherman, S.L. (2001) "FMR1 and the Fragile X syndrome: Human genome epidemiology review". Genet Med 3: 359-371
  2. Martin, J. P. & Bell, J. "A pedigree of mental defect showing sex-linkage". Journal of neurology, neurosurgery, and psychiatry (J. Neurol. Psychiat.). BMJ Publishing Group, London 6.1943, 154-157. Template:ISSN
  3. Lubs, H. (1969) "A marker X chromosome". Am Hum Genet 21: 231.
  4. http://www.wrongdiagnosis.com/f/fragile_x_syndrome/signs.htm
  5. Dölen G, Osterweil E, Rao BS; et al. (2007). "Correction of fragile X syndrome in mice". Neuron. 56 (6): 955–62. doi:10.1016/j.neuron.2007.12.001. PMID 18093519.
  6. Highfield R (2007-12-19). "Fragile X study offers hope for autism treatment". Daily Telegraph. Retrieved 2007-12-22.
  7. MIT researchers reverse symptoms in mice of leading inherited cause of mental retardation

External links


Template:Pervasive developmental disorders Template:Chromosomal abnormalities

Template:Link FA Template:SIB

Ca:Síndrome X fràgil de:Fragiles-X-SyndromTemplate:Link FA fi:Fragile-X-oireyhtymä it:Sindrome dell'X fragile nl:Fragiele-X-syndroom no:Fragile-X sv:Fragil X-syndromet


Template:WH Template:WS