Fanconi anemia: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(16 intermediate revisions by 4 users not shown)
Line 14: Line 14:
{{Fanconi anemia}}
{{Fanconi anemia}}


{{CMG}}
{{CMG}} {{AE}} {{shyam}}


{{SK}} Fanconi anaemia; Fanconi hypoplastic anemia; Fanconi panmyelopathy; Fanconi pancytopenia; FA
{{SK}} Fanconi anaemia; Fanconi hypoplastic anemia; Fanconi panmyelopathy; Fanconi pancytopenia; FA


==[[Fanconi anemia overview|Overview]]==
==[[Fanconi anemia overview|Overview]]==
'''Fanconi anemia''' (FA) is a [[Genetic disorder|genetic disease]] that affects children and adults from all ethnic backgrounds. The disease is named after the Swiss pediatrician who originally described this disorder, [[Guido Fanconi]]. FA is characterized by [[short stature]], skeletal anomalies, increased incidence of solid tumors and leukemias, bone marrow failure ([[aplastic anemia]]), and cellular sensitivity to DNA damaging agents such as [[Mitomycin|mitomycin C]].
==[[Fanconi anemia historical perspective|Historical Perspective]]==


==[[Fanconi anemia historical perspective|Historical Perspective]]==
==[[Fanconi anemia classification|Classification]]==
The discovery of fanconi anemia is largely the work of Swiss pediatrician Guido Fanconi who observed various finding of fanconi anemia to be different then pernicious anemia and led to its discovery.


==[[Fanconi anemia pathophysiology|Pathophysiology]]==
==[[Fanconi anemia pathophysiology|Pathophysiology]]==
Line 28: Line 27:
==[[Fanconi anemia causes|Causes]]==
==[[Fanconi anemia causes|Causes]]==


There are at least 13 genes of which mutations are known to cause FA.
==[[Fanconi anemia differential diagnosis|Differentiating Fanconi Anemia from Other Diseases]]==


=== Common Genes[edit | edit source] ===
==[[Fanconi anemia epidemiology and demographics|Epidemiology and Demographics]]==
* FANCA
* FANCB,
* FANCC
* FANCD1 (BRCA2)
* FANCD2,
* FANCE,
* FANCF
* FANCG


==[[Fanconi anemia differential diagnosis|Differentiating Fanconi anemia from other Diseases]]==
==[[Fanconi anemia risk factors|Risk Factors]]==
Fanconi Anemia must be differentiated from Aplastic Anemia, Paraoxysomal Nocturnal Hemoglobinuria, and Chromosomal breakage syndrome and Hereditary Bone marrow failure syndrome (Dyskeratosis congenita and other short telomere syndromes).
* Fanconi Anemia must be differentiated from other diseases that cause Pancytopenia, Congenital anomalies, and associated with malignancy such as Aplastic Anemia, Rare chromosomal breakage syndrome and inherited bone marrow failure.<ref name="pmid24237973">{{cite journal| author=Hartung HD, Olson TS, Bessler M| title=Acquired aplastic anemia in children. | journal=Pediatr Clin North Am | year= 2013 | volume= 60 | issue= 6 | pages= 1311-36 | pmid=24237973 | doi=10.1016/j.pcl.2013.08.011 | pmc=3894991 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24237973  }}</ref>


* As Fanconi Anemia resembles with variety of other diseases that causes pancytopenia.
==[[Fanconi anemia screening|Screening]]==
* Must be differentiated on basis on congenital anomalies and chromosomal breakage test.<ref name="pmid27069254">{{cite journal| author=Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al.| title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. | journal=Blood | year= 2016 | volume= 127 | issue= 20 | pages= 2391-405 | pmid=27069254 | doi=10.1182/blood-2016-03-643544 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27069254  }}</ref>
 
==[[Fanconi anemia epidemiology and demographics|Epidemiology and Demographics]]==
FA is rare overall, but it is one of the most common inherited bone marrow failure syndromes.
* The incidence of FA is approximately 1 in 100,000 to 250,000 births.
* Approximately 10 to 20 children are born with FA each year in the United States.<ref name="pmid21974856">{{cite journal| author=Rochowski A, Rosenberg PS, Alonzo TA, Gerbing RB, Lange BJ, Alter BP| title=Estimation of the prevalence of Fanconi anemia among patients with de novo acute myelogenous leukemia who have poor recovery from chemotherapy. | journal=Leuk Res | year= 2012 | volume= 36 | issue= 1 | pages= 29-31 | pmid=21974856 | doi=10.1016/j.leukres.2011.09.009 | pmc=4008327 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21974856  }}</ref>
* The probability of FA in the US population, FA, was estimated to be 1 in 129,600 births
* Most children are diagnosed between six and nine years of age, concurrent with the onset of bone marrow failure . Rarely, marrow failure from FA can present in infants and small children


==[[Fanconi anemia natural history, complications and prognosis|Natural History, Complications and Prognosis]]==
==[[Fanconi anemia natural history, complications and prognosis|Natural History, Complications and Prognosis]]==


==Diagnosis==
== [[Fanconi anemia history and symptoms|History and Symptoms]] ==
[[Fanconi anemia history and symptoms|History and Symptoms]]  


The majority of patients with fanconi anemia present with congenital anomalies. Sometimes, FA may be suspected at birth by one or more of these physical traits:
== [[Fanconi anemia physical examination|Physical Examination]] ==
* Skin discolorations, Hand, arm and other skeletal anomalies, Kidney problems, Small head or eyes.
* Low birth weight, Gastrointestinal problems (bowel), Small reproductive organs in males, Heart defects.
Since these physical characteristics can be indicative of other conditions, and since some patients may have no obvious physical traits of FA, the condition may not be diagnosed at birth. They may exhibit symptoms such as:
* Unexplained fatigue, Recurrent colds or viral infections, Recurrent nosebleeds.
* Easy bruising, Blood in the stool or urine, Shortness of breath, Poor growth / short stature.
In rare cases, symptoms do not occur until early adulthood.


[[Fanconi anemia physical examination|Physical Examination]]
== [[Fanconi anemia laboratory findings|Laboratory Findings]] ==


'''CLINICAL FEATURES:'''
== [[Fanconi anemia electrocardiogram|Electrocardiogram]] ==


The most common presenting features of FA are congenital malformations. Cytopenias are also common, and many patients eventually develop bone marrow failure. Common malignancies include myelodysplastic syndrome (MDS), leukemia, and solid tumors, especially squamous cell cancers (SCC)
== [[Fanconi anemia x ray|X Ray]] ==


== Physical Examination[edit | edit source] ==
== [[Fanconi anemia medical therapy|Medical Therapy]] ==  
* Congenital malformations are the most common presenting features of FA.


* Patients with FA usually present with hypo/hyperpigmentation, café-au-lait spots, short staure and thumb or other radial abnormalities.
== [[Fanconi anemia surgery|Surgery]] ==


* Vital Signs Usually normal sometime patients present with fever due to superimposed infection.
== [[Fanconi anemia primary prevention|Primary Prevention]] ==


* Skin abnormalities in Fanconi anemia can include generalized hyperpigmentation on the trunk, neck, and intertriginous areas, the aforementioned café au lait spots, and hypopigmented areas. Delicate features can also be characteristic of patients.
== [[Fanconi anemia secondary prevention|Secondary Prevention]] ==
[[Fanconi anemia laboratory findings|Laboratory Findings]] | [[Fanconi anemia x ray|X Ray]] | [[Fanconi anemia CT|CT]] | [[Fanconi anemia MRI|MRI]] | [[Fanconi anemia ultrasound|Ultrasound]] | [[Fanconi anemia other imaging findings|Other Imaging Findings]] | [[Fanconi anemia other diagnostic studies|Other Diagnostic Studies]]


{{Family tree/start}}
== [[Fanconi anemia cost-effectiveness of therapy|Cost-Effectiveness of Therapy]] ==
{{Family tree | | | | A01 | | | |A01=Suspected clinical FA}}
{{Family tree | | | | |!| | | | | }}
{{Family tree | | | | B01 | | | |B01=Chromosome breakage test on peripheral film}}
{{Family tree | |,|-|-|+|-|-|.| | }}
{{Family tree | |!| | D01 | |!| |D01=Ambiguous}}
{{Family tree | |!| | |!| | |!| | }}
{{Family tree | |!| | E01 | |!| |E01=Repeat Chromosome breakage test}}
{{Family tree | |)|-|-|^|-|-|(| | }}
{{Family tree | C01 | | | | C02 |C01=Abnormal| C02=Normal}}
{{Family tree | |!| | | | |,|^|-|-|.| }}
{{Family tree | |!| | | | |!| | | |!| }}
{{Family tree | |!| | | | F01 | | | F02 |F01=Highly suspected FA|F02=Not highly suspected FA}}
{{Family tree | |!| | | | |!| | | | |!| | }}
{{Family tree | |!| | | | |T01| | |!| |T01=Chromosome breakage test on skin fibroblast}}
{{Family tree | |!| | | |,|^|-|.| | |!| | }}
{{Family tree | |!| | | |!| | |!| | |!| | }}
{{Family tree | |!| | J01 | | | J02 |!|J01=Abnormal|J02=Normal}}
{{Family tree | |!| | | | | | | |!| |!| }}
{{Family tree | |!| | | | | | | | H01 |H01=Consider other IBMFS}}
{{Family tree | K01 | | | | | | | | | |K01=Diagnosis of FA}}
{{Family tree | |!| | | | | | | | | | | }}
{{Family tree | X01 | | | | | | | | | |X01=Genetic testing for Korean<br>mutations FANCA[[exon 27 & 37]]<br>FANCG[[intron 3 & exon 8]]}}
{{Family tree | |!| | | | | | | | | | | }}
{{Family tree | Z01 | | | | | | | | | |Z01=Other FA associated genes}}
{{Family tree/end}
==Treatment==
[[Fanconi anemia medical therapy|Medical Therapy]] | [[Fanconi anemia surgery|Surgery]] | [[Fanconi anemia cost-effectiveness of therapy|Cost-Effectiveness of Therapy]] | [[Fanconi anemia future or investigational therapies|Future or Investigational Therapies]]


==Case Studies==
== [[Fanconi anemia future or investigational therapies|Future or Investigational Therapies]] ==
[[Fanconi anemia case study one|Case #1]]


==Related Chapters==
*[[Absent radius]]


==References==
==References==

Latest revision as of 16:39, 5 May 2019

Template:DiseaseDisorder infobox

Fanconi anemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Fanconi anemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Fanconi anemia On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Fanconi anemia

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Fanconi anemia

CDC on Fanconi anemia

Fanconi anemia in the news

Blogs on Fanconi anemia

Directions to Hospitals Treating Fanconi anemia

Risk calculators and risk factors for Fanconi anemia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Shyam Patel [2]

Synonyms and keywords: Fanconi anaemia; Fanconi hypoplastic anemia; Fanconi panmyelopathy; Fanconi pancytopenia; FA

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Fanconi Anemia from Other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

References

  • Tischkowitz MD, Hodgson SV. Fanconi anaemia. J.Med.Genet. 2003;40:1-10.
  • Tischkowitz M, Dokal I. Fanconi anaemia and leukaemia - clinical and molecular aspects. Br.J.Haematol. 2004;126:176-191.
  • Lensch MW, Rathbun RK, Olson SB, Jones GR, Bagby GC, Jr. Selective pressure as an essential force in molecular evolution of myeloid leukemic clones: a view from the window of Fanconi anemia. Leukemia 1999;13:1784-1789.
  • Kutler DI, Auerbach AD. Fanconi anemia in Ashkenazi Jews. Fam.Cancer 2004;3:241-248.
  • Rosendorff J, Bernstein R, Macdougall L, Jenkins T. Fanconi anemia: another disease of unusually high prevalence in the Afrikaans population of South Africa. Am.J.Med.Genet. 1987;27:793-797.
  • Howlett NG, Taniguchi T, Olson S et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002;297:606-609.
  • Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anaemia. Nat.Rev.Genet. 2001;2:446-457.
  • Auerbach AD, Rogatko A, Schroeder-Kurth TM. International Fanconi Anemia Registry: relation of clinical symptoms to diepoxybutane sensitivity. Blood 1989;73:391-396.
  • Dokal I. The genetics of Fanconi's anaemia. Baillieres Best.Pract.Res.Clin.Haematol. 2000;13:407-425.
  • Kutler DI, Singh B, Satagopan J et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). Blood 2003;101:1249-1256.
  • Alter BP. Cancer in Fanconi anemia, 1927-2001. Cancer 2003;97:425-440.
  • Butturini A, Gale RP, Verlander PC et al. Hematologic abnormalities in Fanconi anemia: an

International Fanconi Anemia Registry study. Blood 1994;84:1650-1655.

  • Alter BP, Caruso JP, Drachtman RA et al. Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet.Cytogenet. 2000;117:125-131.
  • Auerbach AD, Allen RG. Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet.Cytogenet. 1991;51:1-12.
  • Tonnies H, Huber S, Kuhl JS et al. Clonal chromosomal aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood 2003;101:3872-3874.
  • Gluckman E, Auerbach AD, Horowitz MM et al. Bone marrow transplantation for Fanconi anemia. Blood 1995;86:2856-2862.
  • Gluckman E. Radiosensitivity in Fanconi anemia: application to the conditioning for bone marrow transplantation. Radiother.Oncol. 1990;18 Suppl 1:88-93.
  • Cipolleschi MG, Dello SP, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 1993;82:2031-2037.
  • Zhang X, Li J, Sejas DP, Pang Q. Hypoxia-reoxygenation induces premature senescence in FA bone marrow hematopoietic cells. Blood 2005
  • Naf D, Kupfer GM, Suliman A, Lambert K, D'Andrea AD. Functional activity of the fanconi anemia protein FAA requires FAC binding and nuclear localization. Mol.Cell Biol. 1998;18:5952-5960.
  • de Winter JP, Leveille F, van Berkel CG et al. Isolation of a cDNA representing the Fanconi anemia complementation group E gene. Am.J.Hum.Genet. 2000;67:1306-1308.
  • Pagano G, Youssoufian H. Fanconi anaemia proteins: major roles in cell protection against oxidative damage. Bioessays 2003;25:589-595.
  • Park SJ, Ciccone SL, Beck BD et al. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J.Biol.Chem. 2004;279:30053-30059.
  • Connor F, Bertwistle D, Mee PJ et al. Tumorigenesis and a DNA repair defect in mice with a truncating Brca2 mutation. Nat.Genet. 1997;17:423-430.
  • Meetei AR, de Winter JP, Medhurst AL et al. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat.Genet. 2003;35:165-170.
  • Vandenberg CJ, Gergely F, Ong CY et al. BRCA1-independent ubiquitination of FANCD2. Mol.Cell 2003;12:247-254.
  • D'Andrea AD, Dahl N, Guinan EC, Shimamura A. Marrow failure. Hematology.(Am.Soc.Hematol.Educ.Program.) 200258-72.
  • Garcia-Higuera I, Taniguchi T, Ganesan S et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol.Cell 2001;7:249-262.
  • Wang Y, Cortez D, Yazdi P et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000;14:927-939.
  • Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 1999;286:1162-1166.
  • Taniguchi T, Garcia-Higuera I, Xu B et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002;109:459-472.
  • Kruyt FA, Hoshino T, Liu JM et al. Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood 1998;92:3050-3056.
  • Cumming RC, Lightfoot J, Beard K et al. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nat.Med. 2001;7:814-820.
  • Hadjur S, Ung K, Wadsworth L et al. Defective hematopoiesis and hepatic steatosis in mice with combined deficiencies of the genes encoding Fancc and Cu/Zn superoxide dismutase. Blood 2001;98:1003-1011.
  • Pang Q, Fagerlie S, Christianson TA et al. The Fanconi anemia protein FANCC binds to and facilitates the activation of STAT1 by gamma interferon and hematopoietic growth factors. Mol.Cell Biol. 2000;20:4724-4735.
  • Futaki M, Igarashi T, Watanabe S et al. The FANCG Fanconi anemia protein interacts with CYP2E1: possible role in protection against oxidative DNA damage. Carcinogenesis 2002;23:67-72.
  • de Winter JP, Waisfisz Q, Rooimans MA et al. The Fanconi anaemia group G gene FANCG is identical with XRCC9. Nat.Genet. 1998;20:281-283.
  • Clarke AA, Philpott NJ, Gordon-Smith EC, Rutherford TR. The sensitivity of Fanconi anaemia group C cells to apoptosis induced by mitomycin C is due to oxygen radical generation, not DNA crosslinking. Br.J.Haematol. 1997;96:240-247.

Template:Hematology

ca:Anèmia de Fanconi de:Fanconi-Anämie hu:Fanconi anémia nl:Fanconi-anemie fi:Fanconin anemia


Template:WikiDoc Sources