Congestive heart failure cardiac catheterization

Revision as of 23:08, 22 June 2022 by Edzelco (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Resident
Survival
Guide
Congestive Heart Failure Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Systolic Dysfunction
Diastolic Dysfunction
HFpEF
HFrEF

Causes

Differentiating Congestive heart failure from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Clinical Assessment

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Cardiac MRI

Echocardiography

Exercise Stress Test

Myocardial Viability Studies

Cardiac Catheterization

Other Imaging Studies

Other Diagnostic Studies

Treatment

Invasive Hemodynamic Monitoring

Medical Therapy:

Summary
Acute Pharmacotherapy
Chronic Pharmacotherapy in HFpEF
Chronic Pharmacotherapy in HFrEF
Diuretics
ACE Inhibitors
Angiotensin receptor blockers
Aldosterone Antagonists
Beta Blockers
Ca Channel Blockers
Nitrates
Hydralazine
Positive Inotropics
Anticoagulants
Angiotensin Receptor-Neprilysin Inhibitor
Antiarrhythmic Drugs
Nutritional Supplements
Hormonal Therapies
Drugs to Avoid
Drug Interactions
Treatment of underlying causes
Associated conditions

Exercise Training

Surgical Therapy:

Biventricular Pacing or Cardiac Resynchronization Therapy (CRT)
Implantation of Intracardiac Defibrillator
Ultrafiltration
Cardiac Surgery
Left Ventricular Assist Devices (LVADs)
Cardiac Transplantation

ACC/AHA Guideline Recommendations

Initial and Serial Evaluation of the HF Patient
Hospitalized Patient
Patients With a Prior MI
Sudden Cardiac Death Prevention
Surgical/Percutaneous/Transcather Interventional Treatments of HF
Patients at high risk for developing heart failure (Stage A)
Patients with cardiac structural abnormalities or remodeling who have not developed heart failure symptoms (Stage B)
Patients with current or prior symptoms of heart failure (Stage C)
Patients with refractory end-stage heart failure (Stage D)
Coordinating Care for Patients With Chronic HF
Quality Metrics/Performance Measures

Implementation of Practice Guidelines

Congestive heart failure end-of-life considerations

Specific Groups:

Special Populations
Patients who have concomitant disorders
Obstructive Sleep Apnea in the Patient with CHF
NSTEMI with Heart Failure and Cardiogenic Shock

Congestive heart failure cardiac catheterization On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Congestive heart failure cardiac catheterization

CDC on Congestive heart failure cardiac catheterization

Congestive heart failure cardiac catheterization in the news

Blogs on Congestive heart failure cardiac catheterization

Directions to Hospitals Treating Congestive heart failure cardiac catheterization

Risk calculators and risk factors for Congestive heart failure cardiac catheterization

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Sara Zand, M.D.[2] Lakshmi Gopalakrishnan, M.B.B.S. [3] Edzel Lorraine Co, DMD, MD[4]

Overview

Coronary angiography is recommended in patients with heart failure, who have angina pectoris or an angina equivalent despite pharmacological therapy, in order to establish the diagnosis of CAD and its severity. Coronary angiography may also be considered in patients with HFrEF who have an intermediate to high pre-test probability of CAD and who are considered potentially suitable for coronary revascularization.

Cardiac Catheterization

Coronary Angiography

Hemodynamic Assessment

Right Heart Catheterization

Right heart catheterization can be useful to assess the following:

Computed tomography coronary angiography (CTCA)

2021 European Society of Cardiology (DO NOT EDIT) [2]

Coronary Angiography

Class I
"Invasive coronary angiography is recommended in patients with angina despite medical therapy or symptomatic ventricular arrhythmias.(Level of Evidence: B) "
Class IIb
" Invasive coronary angiography may be considered in patients with HFrEF with an intermediate to high pre-test probability of CAD and the presence of ischemia in non-invasive stress tests.(Level of Evidence: B) "
Class I
" Right heart catheterization is recommended in patients with severe HF being evaluated for heart transplantation or mechanical circulatory support (Level of Evidence: C) "
Class IIa
" Right heart catheterization is reasonable in HF patients with suspicion of constrictive pericarditis, restrictive cardiomyopathy, congenital heart disease, and high output states.(Level of Evidence: C) "
Class IIb
" Right heart catheterization may be considered in selected patients with HFpEF to confirm the diagnosis..(Level of Evidence: C) "

Coronary CT Angiography

Class IIa
"Coronary CT angiography should be considered in patients with a low to intermediate pre-test probability of CAD or those with equivocal non-invasive stress tests in order to rule out coronary artery stenosis.(Level of Evidence: C) "
Class IIa
"Endomyocardial biopsy should be considered in patients with rapidly progressive HF despite standard therapy when there is a probability of a specific diagnosis, which can be confirmed only in myocardial samples.(Level of Evidence: C) "


Genetic Evaluation and Testing 2022 AHA/ACC/HFSA Heart Failure Guideline (DO NOT EDIT) [3]

Class I
"1. In first-degree relatives of selected patients with genetic or inherited cardiomyopathies, genetic screening and counseling are recommended to detect cardiac disease and prompt consideration of treatments to decrease HF progression and sudden death. [4][5] (Level of Evidence: B-NR) "
Class IIa
"1. In select patients with nonischemic cardiomyopathy, referral for genetic counseling and testing is reasonable to identify conditions that could guide treatment for patients and family members.[6][7] (Level of Evidence: B-NR) "

References

  1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ (January 2020). "2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes". Eur Heart J. 41 (3): 407–477. doi:10.1093/eurheartj/ehz425. PMID 31504439.
  2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland J, Coats A, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam C, Lyon AR, McMurray J, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano G, Ruschitzka F, Kathrine Skibelund A (September 2021). "2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure". Eur Heart J. 42 (36): 3599–3726. doi:10.1093/eurheartj/ehab368. PMID 34447992 Check |pmid= value (help). Vancouver style error: initials (help)
  3. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM; et al. (2022). "2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 145 (18): e876–e894. doi:10.1161/CIR.0000000000001062. PMID 35363500 Check |pmid= value (help).
  4. Marume K, Noguchi T, Tateishi E, Morita Y, Miura H, Nishimura K; et al. (2020). "Prognosis and Clinical Characteristics of Dilated Cardiomyopathy With Family History via Pedigree Analysis". Circ J. 84 (8): 1284–1293. doi:10.1253/circj.CJ-19-1176. PMID 32624524 Check |pmid= value (help).
  5. Waddell-Smith KE, Donoghue T, Oates S, Graham A, Crawford J, Stiles MK; et al. (2016). "Inpatient detection of cardiac-inherited disease: the impact of improving family history taking". Open Heart. 3 (1): e000329. doi:10.1136/openhrt-2015-000329. PMC 4762189. PMID 26925241.
  6. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM; et al. (2014). "The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing". Genet Med. 16 (8): 601–8. doi:10.1038/gim.2013.204. PMID 24503780.
  7. Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R; et al. (2015). "Atlas of the clinical genetics of human dilated cardiomyopathy". Eur Heart J. 36 (18): 1123–35a. doi:10.1093/eurheartj/ehu301. PMID 25163546.

Template:WikiDoc Sources