CYP2B6

Revision as of 12:21, 4 November 2018 by imported>Nemo bis (Added free to read link in citations with OAbot #oabot)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene.[1] CYP2B6 is a member of the Cytochrome P450 group of enzymes. Along with CYP2A6, it is involved with metabolizing nicotine, along with many other substances.[1]

Function

This gene, CYP2B6, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by phenobarbital. The enzyme is known to metabolize some xenobiotics, such as the anti-cancer drugs cyclophosphamide and ifosphamide.[1]

Gene

Transcript variants for this gene have been described; however, it has not been resolved whether these transcripts are in fact produced by this gene or by a closely related pseudogene, CYP2B7. Both the gene and the pseudogene are located in the middle of a CYP2A pseudogene found in a large cluster of cytochrome P450 genes from the CYP2A, CYP2B and CYP2F subfamilies on chromosome 19q.[1]

CYP2B6 ligands

Following is a table of selected substrates, inducers and inhibitors of CYP2B6.

Inhibitors of CYP2B6 can be classified by their potency, such as:

  • Strong inhibitor being one that causes at least a 5-fold increase in the plasma AUC values, or more than 80% decrease in clearance.[2]
  • Moderate inhibitor being one that causes at least a 2-fold increase in the plasma AUC values, or 50-80% decrease in clearance.[2]
  • Weak inhibitor being one that causes at least a 1.25-fold but less than 2-fold increase in the plasma AUC values, or 20-50% decrease in clearance.[2]
Substrates Inhibitors Inducers
Strong:

Unspecified potency

References

  1. 1.0 1.1 1.2 1.3 "Entrez Gene: cytochrome P450".
  2. 2.0 2.1 2.2 Center for Drug Evaluation and Research. "Drug Interactions & Labeling - Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers". www.fda.gov. Retrieved 2016-06-01.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 Swedish environmental classification of pharmaceuticals - FASS (drug catalog) - Facts for prescribers (Fakta för förskrivare). Retrieved July 2011
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 Flockhart DA (2007). "Drug Interactions: Cytochrome P450 Drug Interaction Table". Indiana University School of Medicine. Retrieved on December 25, 2008.
  5. Rao LK, Flaker AM, Friedel CC, Kharasch ED (2016). "Role of Cytochrome P4502B6 Polymorphisms in Ketamine Metabolism and Clearance". The Journal of the American Society of Anesthesiologists. 125 (12): 1103–1112. doi:10.1097/ALN.0000000000001392. PMID 27763887.
  6. Meyer MR, Bach M, Welter J, Bovens M, Turcant A, Maurer HH (2013). "Ketamine-derived designer drug methoxetamine: metabolism including isoenzyme kinetics and toxicological detectability using GC-MS and LC-(HR-)MSn". Anal Bioanal Chem. 405 (19): 6307–21. doi:10.1007/s00216-013-7051-6. PMID 23774830.
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Walsky RL, Astuccio AV, Obach RS (2006). "Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6". J Clin Pharmacol. 46 (12): 1426–38. doi:10.1177/0091270006293753. PMID 17101742.
  8. Obach RS, Cox LM, Tremaine LM (2005). "Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study". Drug Metab. Dispos. 33 (2): 262–70. doi:10.1124/dmd.104.002428. PMID 15547048.
  9. Guo Z, Raeissi S, White RB, Stevens JC (1997). "Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes". Drug Metab. Dispos. 25 (3): 390–3. PMID 9172960.
  10. Volak LP, Ghirmai S, Cashman JR, Court MH (August 2008). "Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor". Drug Metab. Dispos. 36 (8): 1594–605. doi:10.1124/dmd.108.020552. PMC 2574793. PMID 18480186.
  11. Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, Vermeulen NP (2007). "Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products". Toxicology. 235 (1–2): 83–91. doi:10.1016/j.tox.2007.03.007. PMID 17433521.
  12. 12.0 12.1 12.2 12.3 12.4 Hesse LM, Venkatakrishnan K, Court MH, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ (2000). "CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants". Drug Metab. Dispos. 28 (10): 1176–83. PMID 10997936.
  13. http://www.medscape.com/viewarticle/748581_4

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.