ARHGEF1

Revision as of 14:00, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Rho guanine nucleotide exchange factor (GEF) 1
PDB rendering based on 1iap.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols ARHGEF1 ; GEF1; LBCL2; P115-RHOGEF; SUB1.5
External IDs Template:OMIM5 Template:MGI HomoloGene3454
RNA expression pattern
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Rho guanine nucleotide exchange factor (GEF) 1, also known as ARHGEF1, is a human gene.[1]

Rho GTPases play a fundamental role in numerous cellular processes that are initiated by extracellular stimuli that work through G protein coupled receptors. The encoded protein may form complex with G proteins and stimulate Rho-dependent signals. Multiple alternatively spliced transcript variants have been found for this gene, but the full-length nature of some variants has not been defined.[1]

References

  1. 1.0 1.1 "Entrez Gene: ARHGEF1 Rho guanine nucleotide exchange factor (GEF) 1".

Further reading

  • Fukuhara S, Chikumi H, Gutkind JS (2001). "RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?". Oncogene. 20 (13): 1661–8. doi:10.1038/sj.onc.1204182. PMID 11313914.
  • Hart MJ, Sharma S, elMasry N; et al. (1996). "Identification of a novel guanine nucleotide exchange factor for the Rho GTPase". J. Biol. Chem. 271 (41): 25452–8. PMID 8810315.
  • Aasheim HC, Pedeutour F, Smeland EB (1997). "Characterization, expression and chromosomal localization of a human gene homologous to the mouse Lsc oncogene, with strongest expression in hematopoetic tissues". Oncogene. 14 (14): 1747–52. doi:10.1038/sj.onc.1200994. PMID 9135076.
  • Kozasa T, Jiang X, Hart MJ; et al. (1998). "p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13". Science. 280 (5372): 2109–11. PMID 9641915.
  • Hart MJ, Jiang X, Kozasa T; et al. (1998). "Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13". Science. 280 (5372): 2112–4. PMID 9641916.
  • Zhang H, Wang L, Kao S; et al. (1999). "Functional interaction between the cytoplasmic leucine-zipper domain of HIV-1 gp41 and p115-RhoGEF". Curr. Biol. 9 (21): 1271–4. PMID 10556093.
  • Kim ST, Lim DS, Canman CE, Kastan MB (2000). "Substrate specificities and identification of putative substrates of ATM kinase family members". J. Biol. Chem. 274 (53): 37538–43. PMID 10608806.
  • Bhattacharyya R, Wedegaertner PB (2000). "Galpha 13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding". J. Biol. Chem. 275 (20): 14992–9. doi:10.1074/jbc.M000415200. PMID 10747909.
  • Kozasa T (2001). "Regulation of G protein-mediated signal transduction by RGS proteins". Life Sci. 68 (19–20): 2309–17. PMID 11358341.
  • Wells CD, Gutowski S, Bollag G, Sternweis PC (2001). "Identification of potential mechanisms for regulation of p115 RhoGEF through analysis of endogenous and mutant forms of the exchange factor". J. Biol. Chem. 276 (31): 28897–905. doi:10.1074/jbc.M102913200. PMID 11384980.
  • Chen Z, Wells CD, Sternweis PC, Sprang SR (2001). "Structure of the rgRGS domain of p115RhoGEF". Nat. Struct. Biol. 8 (9): 805–9. doi:10.1038/nsb0901-805. PMID 11524686.
  • Park B, Nguyen NT, Dutt P; et al. (2003). "Association of Lbc Rho guanine nucleotide exchange factor with alpha-catenin-related protein, alpha-catulin/CTNNAL1, supports serum response factor activation". J. Biol. Chem. 277 (47): 45361–70. doi:10.1074/jbc.M202447200. PMID 12270917.
  • Driessens MH, Olivo C, Nagata K; et al. (2002). "B plexins activate Rho through PDZ-RhoGEF". FEBS Lett. 529 (2–3): 168–72. PMID 12372594.
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.
  • Chen Z, Singer WD, Wells CD; et al. (2003). "Mapping the Galpha13 binding interface of the rgRGS domain of p115RhoGEF". J. Biol. Chem. 278 (11): 9912–9. doi:10.1074/jbc.M212695200. PMID 12525488.
  • Bhattacharyya R, Wedegaertner PB (2003). "Characterization of G alpha 13-dependent plasma membrane recruitment of p115RhoGEF". Biochem. J. 371 (Pt 3): 709–20. doi:10.1042/BJ20021897. PMID 12534370.
  • Bhattacharyya R, Wedegaertner PB (2003). "Mutation of an N-terminal acidic-rich region of p115-RhoGEF dissociates alpha13 binding and alpha13-promoted plasma membrane recruitment". FEBS Lett. 540 (1–3): 211–6. PMID 12681510.
  • Bourguignon LY, Singleton PA, Zhu H, Diedrich F (2003). "Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression". J. Biol. Chem. 278 (32): 29420–34. doi:10.1074/jbc.M301885200. PMID 12748184.
  • Holinstat M, Mehta D, Kozasa T; et al. (2003). "Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement". J. Biol. Chem. 278 (31): 28793–8. doi:10.1074/jbc.M303900200. PMID 12754211.

Template:WikiDoc Sources