Percutaneous mitral balloon commissurotomy

Jump to navigation Jump to search

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Mohammed A. Sbeih, M.D. [2]

Overview

The development of this approach was done by Inoue in 1984 and Lock in 1985 for the treatment of mitral stenosis [1][2]. For a long time, surgical commissurotomy and open valve replacement were the only methods by which mitral stenosis could be corrected [3]. PMBV can be performed in chronically symptomatic patients, patients who present emergently with cardiac arrest or pulmonary edema and in asymptomatic patients who plan on childbearing or major noncardiac surgery [4][5]. There is improvement in the mortality rates for mitral stenosis by intervention by percutaneous mitral balloon valvotomy or surgery. The 2006 American College of Cardiology/American Heart Association (ACC/AHA) guidelines on the management of valvular heart disease recommended intervention in symptomatic patients with moderate to severe mitral stenosis [4].

Indications

In asymptomatic patients, intervention is recommended in moderate to severe MS and pulmonary hypertension (pulmonary artery systolic pressure >50 mmHg at rest or >60 mmHg with exercise).

When intervention is indicated in patients with rheumatic MS, the 2006 ACC/AHA guidelines recommend that Percutaneous mitral balloon valvotomy (PMBV) is preferred to surgery if the valve morphology is favorable and the patient does not have left atrial thrombus or moderate to severe (3+ to 4+) mitral regurgitation. Valve repair is performed if possible and preferred over valve replacement which has higher perioperative mortality and morbidity. Valve repair includes both open commissurotomy and placement of an annuloplasty ring after direct visualization of the valve [4].

The decision of whether valvuloplasty is superior to surgery depends on age (<60 favors valvuloplasty), and Cath/ECHO findings (e.g. LVEDP, degree of mobility, thickening and calcification). The average end result with both strategies is about 2 cm2. Moderate or greater MR (mitral regurgitation) and LA thrombus are contraindications to valvuloplasty.

Mitral stenosis is amenable to percutaneous mitral valvuloplasty if the echocardiography demonstrates :

  • Thickening confined to valve tips.
  • Good mobility of Anterior mitral valve leaflet.
  • Little chordal involvement.
  • No more than trivial mitral regurgitation.
  • No left atrial thrombus.
  • No commissural calcification.

Percutaneous mitral balloon valvotomy (PMBV) technique

The interventional cardiologist gains access to the mitral valve by making a puncture in the interatrial septum during cardiac catheterization. Inflation and rapid deflation of a single balloon or a double-balloon opens the stenotic valve. This mechanism is similar to that of surgical commissurotomy [6].

  • Transvenous transeptal technique is most commonly used with the Inoue balloon system.
  • Fossa ovalis lies usually at 1-7 o’clock but this orientation can be distorted in the presence of mitral stenosis where the interatrial septum becomes more flat, horizontal and lower.
  • For the femoral vein approach a 70 cm Brockenbrough needle should be used or an 8 Fr Mullins sheath and advanced under fluoroscopic guidance with pressure monitoring.
  • The latter is necessary to monitor for puncture into adjacent structures such as aorta.
  • Further catheter manipulation may be necessary to direct the catheter into the left ventricle through the mitral valve rather than towards one of the pulmonary veins.
  • The Mullins sheath is exchanged for a solid-core coiled 0.025 inch guidewire over which a 14 Fr dilator is placed.
  • This is exchanged for the Inoue balloon (24-30 mm) which inflates in three stages allowing for balloon self-positioning with the last inflation resulting in commissural splitting.

A transthoracic echocardiography should be done to measure the mitral valve area and assess the severity of regurgitation as a complication of the procedure. PMBV should be stopped if adequate valve area has been achieved or if the severity of mitral regurgitation has been increased.

References

  1. Carroll JD, Feldman T (1993). "Percutaneous mitral balloon valvotomy and the new demographics of mitral stenosis". JAMA. 270 (14): 1731–6. PMID 8411505.
  2. Inoue K, Owaki T, Nakamura T, Kitamura F, Miyamoto N (1984). "Clinical application of transvenous mitral commissurotomy by a new balloon catheter". J Thorac Cardiovasc Surg. 87 (3): 394–402. PMID 6700245.
  3. Lock JE, Khalilullah M, Shrivastava S, Bahl V, Keane JF (1985). "Percutaneous catheter commissurotomy in rheumatic mitral stenosis". N Engl J Med. 313 (24): 1515–8. doi:10.1056/NEJM198512123132405. PMID 4069160.
  4. 4.0 4.1 4.2 Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD; et al. (2008). "2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Circulation. 118 (15): e523–661. doi:10.1161/CIRCULATIONAHA.108.190748. PMID 18820172.
  5. Lokhandwala YY, Banker D, Vora AM, Kerkar PG, Deshpande JR, Kulkarni HL; et al. (1998). "Emergent balloon mitral valvotomy in patients presenting with cardiac arrest, cardiogenic shock or refractory pulmonary edema". J Am Coll Cardiol. 32 (1): 154–8. PMID 9669264.
  6. Inoue K, Feldman T (1993). "Percutaneous transvenous mitral commissurotomy using the Inoue balloon catheter". Cathet Cardiovasc Diagn. 28 (2): 119–25. PMID 8448794.


Template:WikiDoc Sources