Silent thyroiditis differential diagnosis
Silent thyroiditis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Silent thyroiditis differential diagnosis On the Web |
American Roentgen Ray Society Images of Silent thyroiditis differential diagnosis |
Risk calculators and risk factors for Silent thyroiditis differential diagnosis |
Painless thyroiditis must be differentiated from other causes of hyperthyroidism such as Grave's disease and toxic nodular goiter.
Cause of thyrotoxicosis | TSH receptor antibodies | Thyroid US | Color flow Doppler | Radioactive iodine uptake/Scan | Other features |
---|---|---|---|---|---|
Graves' disease | + | Hypoechoic pattern | ? | ? | Ophthalmopathy, dermopathy, acropachy |
Toxic nodular goiter | - | Multiple nodules | - | Hot nodules at thyroid scan | - |
Toxic adenoma | - | Single nodule | - | Hot nodule | - |
Subacute thyroiditis | - | Heterogeneous hypoechoic areas | Reduced/absent flow | ? | Neck pain, fever, and elevated inflammatory index |
Painless thyroiditis | - | Hypoechoic pattern | Reduced/absent flow | ? | - |
Amiodarone induced thyroiditis-Type 1 | - | Diffuse or nodular goiter | ?/Normal/? | ? but higher than in Type 2 | High urinary iodine |
Amiodarone induced thyroiditis-Type 2 | - | Normal | Absent | ?/absent | High urinary iodine |
Central hyperthyroidism | - | Diffuse or nodular goiter | Normal/? | ? | Inappropriately normal or high TSH |
Trophoblastic disease | - | Diffuse or nodular goiter | Normal/? | ? | - |
Factitious thyrotoxicosis | - | Variable | Reduced/absent flow | ? | ? Serum thyroglobulin |
Struma ovarii | - | Variable | Reduced/absent flow | ? | Abdominal RAIU |
Disease | Findings | |
---|---|---|
Thyroiditis | Direct chemical toxicity with inflammation | Amiodarone, sunitinib, pazopanib, axitinib, and other tyrosine kinase inhibitors may also be associated with a destructive thyroiditis.[1][2] |
Radiation thyroiditis | Patients treated with radioiodine may develop thyroid pain and tenderness 5 to 10 days later, due to radiation-induced injury and necrosis of thyroid follicular cells and associated inflammation. | |
Drugs that interfere with the immune system | Interferon-alfa is a well-known cause of thyroid abnormality. It mostly leads to the development of de novo antithyroid antibodies.[3] | |
Lithium | Patients treated with lithium are at a high risk of developing painless thyroiditis and Graves' disease. | |
Palpation thyroiditis | Manipulation of the thyroid gland during thyroid biopsy or neck surgery and vigorous palpation during the physical examination may cause transient hyperthyroidism. | |
Exogenous and ectopic hyperthyroidism | Factitious ingestion of thyroid hormone | The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.[4] |
Acute hyperthyroidism from a levothyroxine overdose | The diagnosis is based on the clinical features, laboratory findings, and 24-hour radioiodine uptake.[5] | |
Struma ovarii | Functioning thyroid tissue is present in an ovarian neoplasm. | |
Functional thyroid cancer metastases | Large bony metastases from widely metastatic follicular thyroid cancer cause symptomatic hyperthyroidism. | |
Hashitoxicosis | It is an autoimmune thyroid disease that initially presents with hyperthyroidism and a high radioiodine uptake caused by TSH-receptor antibodies similar to Graves' disease. It is then followed by the development of hypothyroidism due to the infiltration of the thyroid gland with lymphocytes and the resultant autoimmune-mediated destruction of thyroid tissue, similar to chronic lymphocytic thyroiditis.[6] | |
Toxic adenoma and toxic multinodular goiter | Toxic adenoma and toxic multinodular goiter are results of focal/diffuse hyperplasia of thyroid follicular cells independent of TSH regulation. Findings of single or multiple nodules are seen on physical examination or thyroid scan.[7] | |
Iodine-induced hyperthyroidism | It is uncommon but can develop after an iodine load, such as administration of contrast agents used for angiography or computed tomography (CT), or iodine-rich drugs such as amiodarone. | |
Trophoblastic disease and germ cell tumors | Thyroid-stimulating hormone and HCG have a common alpha-subunit and a beta-subunit with considerable homology. As a result, HCG has weak thyroid-stimulating activity and high titer HCG may mimic hyperthyroidism.[8] |
References
- ↑ Lambert M, Unger J, De Nayer P, Brohet C, Gangji D (1990). "Amiodarone-induced thyrotoxicosis suggestive of thyroid damage". J. Endocrinol. Invest. 13 (6): 527–30. PMID 2258582.
- ↑ Ahmadieh H, Salti I (2013). "Tyrosine kinase inhibitors induced thyroid dysfunction: a review of its incidence, pathophysiology, clinical relevance, and treatment". Biomed Res Int. 2013: 725410. doi:10.1155/2013/725410. PMC 3824811. PMID 24282820.
- ↑ Vialettes B, Guillerand MA, Viens P, Stoppa AM, Baume D, Sauvan R, Pasquier J, San Marco M, Olive D, Maraninchi D (1993). "Incidence rate and risk factors for thyroid dysfunction during recombinant interleukin-2 therapy in advanced malignancies". Acta Endocrinol. 129 (1): 31–8. PMID 8351956.
- ↑ Cohen JH, Ingbar SH, Braverman LE (1989). "Thyrotoxicosis due to ingestion of excess thyroid hormone". Endocr. Rev. 10 (2): 113–24. doi:10.1210/edrv-10-2-113. PMID 2666114.
- ↑ Jha S, Waghdhare S, Reddi R, Bhattacharya P (2012). "Thyroid storm due to inappropriate administration of a compounded thyroid hormone preparation successfully treated with plasmapheresis". Thyroid. 22 (12): 1283–6. doi:10.1089/thy.2011.0353. PMID 23067331.
- ↑ Fatourechi V, McConahey WM, Woolner LB (1971). "Hyperthyroidism associated with histologic Hashimoto's thyroiditis". Mayo Clin. Proc. 46 (10): 682–9. PMID 5171000.
- ↑ Laurberg P, Pedersen KM, Vestergaard H, Sigurdsson G (1991). "High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves' disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland". J. Intern. Med. 229 (5): 415–20. PMID 2040867.
- ↑ Oosting SF, de Haas EC, Links TP, de Bruin D, Sluiter WJ, de Jong IJ, Hoekstra HJ, Sleijfer DT, Gietema JA (2010). "Prevalence of paraneoplastic hyperthyroidism in patients with metastatic non-seminomatous germ-cell tumors". Ann. Oncol. 21 (1): 104–8. doi:10.1093/annonc/mdp265. PMID 19605510.