Dextro-transposition of the great arteries corrective surgery: Difference between revisions

Jump to navigation Jump to search
(New page: === Corrective Surgery === {{Dextro-transposition of the great arteries/complete transposition of the great arteries}} '''For patient information click [[Transposition of the great vessel...)
 
(No difference)

Revision as of 12:43, 18 July 2011

Corrective Surgery

Dextro-transposition of the great arteries/complete transposition of the great arteries Microchapters

Home

Patient Info

Overview

Pathophysiology

Epidemiology & Demographics

Screening

Natural History, Complications & Prognosis

Causes of dextro-transposition of the great arteries

Differentiating dextro-transposition of the great arteries from other Diseases

Diagnosis

History & Symptoms

Physical Examination

Lab Tests

Electrocardiogram

Chest X Ray

Echocardiography or Ultrasound

Cardiac catheterization

Treatment overview

Medical Therapy

Transposition of the great arteries

Transposition of the great arteries

Transposition of the great arteries

For patient information click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editors-In-Chief: Keri Shafer, M.D. [2]; Atif Mohammad, M.D., Priyamvada Singh, MBBS

Arterial switch or Jatene Operation

The successful anatomical correction of TGA was first described in 1975 by Jatene et al(1). In the absence of left ventricular outflow tract obstruction, the arterial switch operation is the standard therapy for d-TGA. Most infants undergo definitive repair within the first 2 weeks of life.

During the procedure, the baby will be placed under general anesthesia and special monitoring IVs will be used. The heart and vessels are accessed via median sternotomy. The heart/lung machine (cardiopulmonary bypass machine) is connected. As this machine needs its "circulation" to be filled with blood, a child will require a blood transfusion for this surgery. The patient is cooled for 20 minutes to 20 Celsius degree rectal temperature.

Once the heart is stopped and emptied, the aorta and the pulmonary artery are divided. The site of the aortic transection is marked before the cross clamp is applied. The aorta and pulmonary artery are transected at a level above the valve sinuses. The ostium of the coronary arteries are excised along with a large segment of surrounding aortic wall and sutured into place in the neo-aorta (basal part of the pulmonary artery). The pulmonary trunk is moved forward into its new position anterior to the aorta. Finally, the switched great arteries are sutured into place.

The heart is then allowed to fill and take over its normal function. Temporary pacemaker wires and drainage tubes are then placed and the chest is closed.

Some arterial switch recipients may present with post-operative pulmonary stenosis, which would then be repaired with angioplasty, pulmonary stenting via heart cath or median sternotomy, and/or xenograft.

References
  1. Michael Gatzolius. Diagnosis and management of Adult with Congenital Heart Disease. 2004

Atrial Switch Repair

Mustard and Senning Operations

In 1959, Senning described the first definitive operation (physiological repair) for patients with TGA. In 1964, Mustard published his experience with the atrial switch. This operation became very popular due to an increase in survival of over 90%. Both of these procedures "correct" the physiologic abnormality of the TGA by forming a baffle within the atria in order to switch the flow of blood at inflow level. As a consequence the heart and lungs will be in series.

The Mustard Operation consist of an atrial septectomy and placement of a baffle that directs caval blood to the mitral valve, allowing the pulmonary veins to drain into the tricuspid valve. The baffle is created from pericardium or synthetic material.

The Senning operation, utilized right atrial wall and atrial septal tissue (without the use of extrinsic materials), to create the baffle or wall of the caval tunnel in order to achieve the same goal as in Mustard.

Although the early mortality rate for both procedures is low, between 1 and 10% in experienced hands, the long-term outcome is affected by late complications such as atrial dysrhythmia (with the highest incidence of more than 50% within 10 years), and a late right ventricular (systemic ventricular) dysfunction (approximately 10%).

The Seening repair is becoming more promising than Mustard due to the better long term outcomes in terms of venous obstruction and atrial haemodynamics. However, the procedure of choice for treatment of patients with d-TGA is the Arterial Switch or Jatene Operation.

Rastelli Operation

Is the most frequently used surgical option for patients with TGA, VSD, and pulmonary outflow tract obstruction. It depend on appropriate VSD anatomy (large and subaortic) because the it will be used as part of the left ventricular outflow tract (LVOT), involving placement of a baffle within the RV to direct blood flow from the VSD to the aorta. A conduit is inserted between the RV and the pulmonary artery, which has been oversewn.

The main advantage of this procedure is that the LV becomes the systemic ventricle, but the conduit will likely need to be replaced several times during the patient's life. The appropriate age for this operation is still debated, due to the higher risk with the early repair. The younger the patient the smaller the conduit, needing earlier reoperation.

References

Acknowledgements and Initial Contributors to Page

Leida Perez, M.D.

External links

nl:Transpositie van de grote vaten

Template:WH Template:WS