TARS (gene): Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Threonyl-tRNA synthetase, cytoplasmic''' is an [[enzyme]] that in humans is encoded by the ''TARS'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: TARS threonyl-tRNA synthetase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6897| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_TARS_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1wwt.
| PDB = {{PDB2|1wwt}}
| Name = Threonyl-tRNA synthetase
| HGNCid = 11572
| Symbol = TARS
| AltSymbols =; MGC9344; ThrRS
| OMIM = 187790
| ECnumber = 
| Homologene = 11852
| MGIid = 106314
| GeneAtlas_image1 = PBB_GE_TARS_201263_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0004829 |text = threonine-tRNA ligase activity}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0016874 |text = ligase activity}}
| Component = {{GNF_GO|id=GO:0005625 |text = soluble fraction}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}}
| Process = {{GNF_GO|id=GO:0006435 |text = threonyl-tRNA aminoacylation}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 6897
    | Hs_Ensembl = ENSG00000113407
    | Hs_RefseqProtein = NP_689508
    | Hs_RefseqmRNA = NM_152295
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 5
    | Hs_GenLoc_start = 33476639
    | Hs_GenLoc_end = 33505401
    | Hs_Uniprot = P26639
    | Mm_EntrezGene = 110960
    | Mm_Ensembl = ENSMUSG00000022241
    | Mm_RefseqmRNA = XM_977343
    | Mm_RefseqProtein = XP_982437
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 15
    | Mm_GenLoc_start = 11328388
    | Mm_GenLoc_end = 11344383
    | Mm_Uniprot = Q3U630
  }}
}}
'''Threonyl-tRNA synthetase''', also known as '''TARS''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: TARS threonyl-tRNA synthetase| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6897| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Threonyl-tRNA synthetase belongs to the class-II aminoacyl-tRNA synthetase family<ref name="entrez">{{cite web | title = Entrez Gene: TARS threonyl-tRNA synthetase| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6897| accessdate = }}</ref>
| summary_text = [[Aminoacyl tRNA synthetases]] catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Threonyl-tRNA synthetase belongs to the class-II aminoacyl-tRNA synthetase family<ref name="entrez">{{cite web | title = Entrez Gene: TARS threonyl-tRNA synthetase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6897| accessdate = }}</ref>
}}
}}
==See also==
* [[Aminoacyl tRNA synthetase]]


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Freist W, Gauss DH |title=Threonyl-tRNA synthetase. |journal=Biol. Chem. Hoppe-Seyler |volume=376 |issue= 4 |pages= 213-24 |year= 1995 |pmid= 7626230 |doi=  }}
*{{cite journal  | vauthors=Freist W, Gauss DH |title=Threonyl-tRNA synthetase. |journal=Biol. Chem. Hoppe-Seyler |volume=376 |issue= 4 |pages= 213–24 |year= 1995 |pmid= 7626230 |doi=  }}
*{{cite journal  | author=Cruzen ME, Arfin SM |title=Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to the Escherichia coli and yeast enzymes. |journal=J. Biol. Chem. |volume=266 |issue= 15 |pages= 9919-23 |year= 1991 |pmid= 2033077 |doi=  }}
*{{cite journal  | vauthors=Cruzen ME, Arfin SM |title=Nucleotide and deduced amino acid sequence of human threonyl-tRNA synthetase reveals extensive homology to the Escherichia coli and yeast enzymes. |journal=J. Biol. Chem. |volume=266 |issue= 15 |pages= 9919–23 |year= 1991 |pmid= 2033077 |doi=  }}
*{{cite journal  | author=Kontis KJ, Arfin SM |title=Isolation of a cDNA clone for human threonyl-tRNA synthetase: amplification of the structural gene in borrelidin-resistant cell lines. |journal=Mol. Cell. Biol. |volume=9 |issue= 5 |pages= 1832-8 |year= 1989 |pmid= 2747635 |doi=  }}
*{{cite journal  | vauthors=Kontis KJ, Arfin SM |title=Isolation of a cDNA clone for human threonyl-tRNA synthetase: amplification of the structural gene in borrelidin-resistant cell lines. |journal=Mol. Cell. Biol. |volume=9 |issue= 5 |pages= 1832–8 |year= 1989 |pmid= 2747635 |doi= | pmc=362973 }}
*{{cite journal  | author=Gerken SC, Wasmuth JJ, Arfin SM |title=Threonyl-tRNA synthetase gene maps close to leucyl-tRNA synthetase gene on human chromosome 5. |journal=Somat. Cell Mol. Genet. |volume=12 |issue= 5 |pages= 519-22 |year= 1986 |pmid= 3464105 |doi=  }}
*{{cite journal  | vauthors=Gerken SC, Wasmuth JJ, Arfin SM |title=Threonyl-tRNA synthetase gene maps close to leucyl-tRNA synthetase gene on human chromosome 5. |journal=Somat. Cell Mol. Genet. |volume=12 |issue= 5 |pages= 519–22 |year= 1986 |pmid= 3464105 |doi=10.1007/BF01539923 }}
*{{cite journal  | author=Pan F, Lee HH, Pai SH, Lo KY |title=Purification and subunit structure studies of human placental threonyl-tRNA synthetase. |journal=Int. J. Pept. Protein Res. |volume=19 |issue= 3 |pages= 300-9 |year= 1982 |pmid= 7118399 |doi=  }}
*{{cite journal  | vauthors=Pan F, Lee HH, Pai SH, Lo KY |title=Purification and subunit structure studies of human placental threonyl-tRNA synthetase. |journal=Int. J. Pept. Protein Res. |volume=19 |issue= 3 |pages= 300–9 |year= 1982 |pmid= 7118399 |doi=10.1111/j.1399-3011.1982.tb03042.x }}
*{{cite journal  | author=Pan F, Lo KY, Pai SH, Lee HH |title=Kinetic mechanism of threonyl-tRNA synthetase from human placenta. |journal=Int. J. Pept. Protein Res. |volume=20 |issue= 2 |pages= 159-66 |year= 1982 |pmid= 7118437 |doi=  }}
*{{cite journal  | vauthors=Pan F, Lo KY, Pai SH, Lee HH |title=Kinetic mechanism of threonyl-tRNA synthetase from human placenta. |journal=Int. J. Pept. Protein Res. |volume=20 |issue= 2 |pages= 159–66 |year= 1982 |pmid= 7118437 |doi=10.1111/j.1399-3011.1982.tb02670.x }}
*{{cite journal  | author=Ogata K, Kurahashi A, Nishiyama C, Terao K |title=Presence of role of the 5SrRNA-L5 protein complex (5SRNP) in the threonyl- and histidyl-tRNA synthetase complex in rat liver cytosol. |journal=Biochim. Biophys. Acta |volume=1218 |issue= 3 |pages= 388-400 |year= 1994 |pmid= 8049265 |doi=  }}
*{{cite journal  | vauthors=Ogata K, Kurahashi A, Nishiyama C, Terao K |title=Presence of role of the 5SrRNA-L5 protein complex (5SRNP) in the threonyl- and histidyl-tRNA synthetase complex in rat liver cytosol. |journal=Biochim. Biophys. Acta |volume=1218 |issue= 3 |pages= 388–400 |year= 1994 |pmid= 8049265 |doi=  10.1016/0167-4781(94)90192-9}}
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal   |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal   |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173-8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal   |vauthors=Rual JF, Venkatesan K, Hao T, etal |title=Towards a proteome-scale map of the human protein-protein interaction network |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal | author=Vasilescu J, Zweitzig DR, Denis NJ, ''et al.'' |title=The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells. |journal=J. Proteome Res. |volume=6 |issue= 1 |pages= 298-305 |year= 2007 |pmid= 17203973 |doi= 10.1021/pr060438j }}
*{{cite journal   |vauthors=Vasilescu J, Zweitzig DR, Denis NJ, etal |title=The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells |journal=J. Proteome Res. |volume=6 |issue= 1 |pages= 298–305 |year= 2007 |pmid= 17203973 |doi= 10.1021/pr060438j }}
*{{cite journal  | author=Tu LC, Yan X, Hood L, Lin B |title=Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells. |journal=Mol. Cell Proteomics |volume=6 |issue= 4 |pages= 575-88 |year= 2007 |pmid= 17220478 |doi= 10.1074/mcp.M600249-MCP200 }}
*{{cite journal  | vauthors=Tu LC, Yan X, Hood L, Lin B |title=Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells |journal=Mol. Cell. Proteomics |volume=6 |issue= 4 |pages= 575–88 |year= 2007 |pmid= 17220478 |doi= 10.1074/mcp.M600249-MCP200 }}
*{{cite journal | author=Ewing RM, Chu P, Elisma F, ''et al.'' |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue=  |pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 }}
*{{cite journal   |vauthors=Ewing RM, Chu P, Elisma F, etal |title=Large-scale mapping of human protein-protein interactions by mass spectrometry |journal=Mol. Syst. Biol. |volume=3 |issue=  1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 }}
}}
}}
{{refend}}
{{refend}}
{{PDB Gallery|geneid=6897}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


{{protein-stub}}
{{gene-5-stub}}
{{WikiDoc Sources}}

Latest revision as of 11:34, 15 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Threonyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the TARS gene.[1]

Aminoacyl tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Threonyl-tRNA synthetase belongs to the class-II aminoacyl-tRNA synthetase family[1]

See also

References

  1. 1.0 1.1 "Entrez Gene: TARS threonyl-tRNA synthetase".

Further reading