ECHS1: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial''', also known as '''ECHS1''', is a [[human]] [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1892| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_ECHS1_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1dub.
| PDB = {{PDB2|1dub}}, {{PDB2|2dub}}, {{PDB2|2hw5}}
| Name = Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial
| HGNCid = 3151
| Symbol = ECHS1
| AltSymbols =; SCEH
| OMIM = 602292
| ECnumber = 
| Homologene = 3018
| MGIid = 2136460
| GeneAtlas_image1 = PBB_GE_ECHS1_201135_at_tn.png
| Function = {{GNF_GO|id=GO:0004300 |text = enoyl-CoA hydratase activity}} {{GNF_GO|id=GO:0016829 |text = lyase activity}}
| Component = {{GNF_GO|id=GO:0005739 |text = mitochondrion}}
| Process = {{GNF_GO|id=GO:0006091 |text = generation of precursor metabolites and energy}} {{GNF_GO|id=GO:0006629 |text = lipid metabolic process}} {{GNF_GO|id=GO:0006631 |text = fatty acid metabolic process}} {{GNF_GO|id=GO:0006635 |text = fatty acid beta-oxidation}} {{GNF_GO|id=GO:0008152 |text = metabolic process}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 1892
    | Hs_Ensembl = ENSG00000127884
    | Hs_RefseqProtein = NP_004083
    | Hs_RefseqmRNA = NM_004092
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 10
    | Hs_GenLoc_start = 135025974
    | Hs_GenLoc_end = 135037183
    | Hs_Uniprot = P30084
    | Mm_EntrezGene = 93747
    | Mm_Ensembl = ENSMUSG00000025465
    | Mm_RefseqmRNA = NM_053119
    | Mm_RefseqProtein = NP_444349
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 7
    | Mm_GenLoc_start = 139957032
    | Mm_GenLoc_end = 139967776
    | Mm_Uniprot = Q8BU95
  }}
}}
'''Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial''', also known as '''ECHS1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1892| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1892| accessdate = }}</ref>
| summary_text = The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.<ref name="entrez">{{cite web | title = Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1892| accessdate = }}</ref>
}}
}}
==Structure==
The ECHS1 gene is approximately 11 kb in length, and is composed of eight [[exons]], with exons I and VIII containing the 5'- and 3'-untranslated regions, respectively. There are two major transcription start sites, located 62 and 63 bp upstream of the translation codon, were mapped by primer extension analysis. The 5'-flanking region of the ECHS1 gene is GC-rich and contains several copies of the SP1 binding motive but no typical TATA or CAAT boxes are apparent. Alu repeat elements have been identified within the region -1052/-770 relative to the cap site and in [[intron]] 7.<ref>{{Cite journal
| pmid = 9073515
| year = 1997
| author1 = Janssen
| first1 = U
| title = Human mitochondrial enoyl-CoA hydratase gene (ECHS1): Structural organization and assignment to chromosome 10q26.2-q26.3
| journal = Genomics
| volume = 40
| issue = 3
| pages = 470–5
| last2 = Davis
| first2 = E. M.
| last3 = Le Beau
| first3 = M. M.
| last4 = Stoffel
| first4 = W
| doi = 10.1006/geno.1996.4597
}}</ref> The precursor [[polypeptide]] contains 290 [[amino acid]] residues, with an N-terminal presequence of 29 residues, a  5'-untranslated sequence of 21 bp and a 3'-untranslated sequence of 391 bp.<ref name= "Kanazawa">{{Cite journal
| pmid = 8012501
| year = 1993
| author1 = Kanazawa
| first1 = M
| title = Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase
| journal = Enzyme & protein
| volume = 47
| issue = 1
| pages = 9–13
| last2 = Ohtake
| first2 = A
| last3 = Abe
| first3 = H
| last4 = Yamamoto
| first4 = S
| last5 = Satoh
| first5 = Y
| last6 = Takayanagi
| first6 = M
| last7 = Niimi
| first7 = H
| last8 = Mori
| first8 = M
| last9 = Hashimoto
| first9 = T
}}</ref>
==Function==
Enoyl-CoA hydratase (ECH) catalyzes the second step in [[beta-oxidation]] pathway of fatty acid metabolism. The enzyme is involved in the formation of a β-hydroxyacyl-CoA [[thioester]]. The two catalytic glutamic acid residues are believed to act in concert to activate a water molecule, while Gly-141 is proposed to be involved in substrate activation. There are two potent [[Enzyme inhibitor|inhibitors]] of ECHS, which irreversibly inactivate the enzyme via covalent adduct formation.<ref>{{Cite journal
| pmid = 12467702
| year = 2003
| author1 = Agnihotri
| first1 = G
| title = Enoyl-CoA hydratase. Reaction, mechanism, and inhibition
| journal = Bioorganic & Medicinal Chemistry
| volume = 11
| issue = 1
| pages = 9–20
| last2 = Liu
| first2 = H. W.
| doi=10.1016/s0968-0896(02)00333-4
}}</ref>
==Clinical significance==
Enoyl-CoA hydratase short chain has been confirmed to interact with [[STAT3]], such that ECHS1 specifically represses STAT3 activity by inhibiting STAT3 phosphorylation.<ref>{{Cite journal
| pmid = 23416296
| year = 2013
| author1 = Chang
| first1 = Y
| title = ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling
| journal = FEBS Letters
| volume = 587
| issue = 6
| pages = 607–13
| last2 = Wang
| first2 = S. X.
| last3 = Wang
| first3 = Y. B.
| last4 = Zhou
| first4 = J
| last5 = Li
| first5 = W. H.
| last6 = Wang
| first6 = N
| last7 = Fang
| first7 = D. F.
| last8 = Li
| first8 = H. Y.
| last9 = Li
| first9 = A. L.
| last10 = Zhang
| first10 = X. M.
| last11 = Zhang
| first11 = W. N.
| doi = 10.1016/j.febslet.2013.02.005
}}</ref> STAT3 can act as both an oncogene and a tumor suppressor. ECHS1 itself has shown to occur in many cancers, particularly in [[hypatocellular carcinoma]] (HCC) development;<ref>{{Cite journal
| pmid = 23879543
| year = 2013
| author1 = Zhu
| first1 = X. S.
| title = Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma cell proliferation via suppression of Akt activity
| journal = Critical reviews in eukaryotic gene expression
| volume = 23
| issue = 3
| pages = 275–82
| last2 = Dai
| first2 = Y. C.
| last3 = Chen
| first3 = Z. X.
| last4 = Xie
| first4 = J. P.
| last5 = Zeng
| first5 = W
| last6 = Lin
| first6 = Y. Y.
| last7 = Tan
| first7 = Q. H.
| doi=10.1615/critreveukaryotgeneexpr.2013007531
}}</ref> both exogenous and endogenous forms of ECHS1 bind to HBs and induce apoptosis as a result. This means that ECHS1 may be used in the future as a therapy for patients with HBV-related [[hepatitis]] or HCC.<ref>{{Cite journal
| pmid = 23178449
| year = 2013
| author1 = Xiao
| first1 = C. X.
| title = ECHS1 acts as a novel HBs ''Ag''-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells
| journal = Cancer Letters
| volume = 330
| issue = 1
| pages = 67–73
| last2 = Yang
| first2 = X. N.
| last3 = Huang
| first3 = Q. W.
| last4 = Zhang
| first4 = Y. Q.
| last5 = Lin
| first5 = B. Y.
| last6 = Liu
| first6 = J. J.
| last7 = Liu
| first7 = Y. P.
| last8 = Jazag
| first8 = A
| last9 = Guleng
| first9 = B
| last10 = Ren
| first10 = J. L.
| doi = 10.1016/j.canlet.2012.11.030
}}</ref>


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Hochstrasser DF, Frutiger S, Paquet N, ''et al.'' |title=Human liver protein map: a reference database established by microsequencing and gel comparison. |journal=Electrophoresis |volume=13 |issue= 12 |pages= 992-1001 |year= 1993 |pmid= 1286669 |doi=  }}
*{{cite journal  | vauthors=Hochstrasser DF, Frutiger S, Paquet N |title=Human liver protein map: a reference database established by microsequencing and gel comparison. |journal=Electrophoresis |volume=13 |issue= 12 |pages= 992–1001 |year= 1993 |pmid= 1286669 |doi=10.1002/elps.11501301201 |display-authors=etal}}
*{{cite journal  | author=Dawson SJ, White LA |title=Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin. |journal=J. Infect. |volume=24 |issue= 3 |pages= 317-20 |year= 1992 |pmid= 1602151 |doi=  }}
*{{cite journal  | vauthors=Dawson SJ, White LA |title=Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin. |journal=J. Infect. |volume=24 |issue= 3 |pages= 317–20 |year= 1992 |pmid= 1602151 |doi=10.1016/S0163-4453(05)80037-4 }}
*{{cite journal  | author=Li J, Norwood DL, Mao LF, Schulz H |title=Mitochondrial metabolism of valproic acid. |journal=Biochemistry |volume=30 |issue= 2 |pages= 388-94 |year= 1991 |pmid= 1988037 |doi=  }}
*{{cite journal  | vauthors=Li J, Norwood DL, Mao LF, Schulz H |title=Mitochondrial metabolism of valproic acid. |journal=Biochemistry |volume=30 |issue= 2 |pages= 388–94 |year= 1991 |pmid= 1988037 |doi=10.1021/bi00216a012 }}
*{{cite journal  | author=Jackson S, Schaefer J, Middleton B, Turnbull DM |title=Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase. |journal=Biochem. Biophys. Res. Commun. |volume=214 |issue= 1 |pages= 247-53 |year= 1995 |pmid= 7669045 |doi=  }}
*{{cite journal  | vauthors=Jackson S, Schaefer J, Middleton B, Turnbull DM |title=Characterisation of a novel enzyme of human fatty acid beta-oxidation: a matrix-associated, mitochondrial 2-enoyl-CoA hydratase. |journal=Biochem. Biophys. Res. Commun. |volume=214 |issue= 1 |pages= 247–53 |year= 1995 |pmid= 7669045 |doi=10.1006/bbrc.1995.2281 }}
*{{cite journal  | author=Kanazawa M, Ohtake A, Abe H, ''et al.'' |title=Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase. |journal=Enzyme Protein |volume=47 |issue= 1 |pages= 9-13 |year= 1994 |pmid= 8012501 |doi=  }}
*{{cite journal  | vauthors=Kanazawa M, Ohtake A, Abe H |title=Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase. |journal=Enzyme Protein |volume=47 |issue= 1 |pages= 9–13 |year= 1994 |pmid= 8012501 |doi=  |display-authors=etal}}
*{{cite journal  | author=Janssen U, Davis EM, Le Beau MM, Stoffel W |title=Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. |journal=Genomics |volume=40 |issue= 3 |pages= 470-5 |year= 1997 |pmid= 9073515 |doi= 10.1006/geno.1996.4597 }}
*{{cite journal  | vauthors=Janssen U, Davis EM, Le Beau MM, Stoffel W |title=Human mitochondrial enoyl-CoA hydratase gene (ECHS1): structural organization and assignment to chromosome 10q26.2-q26.3. |journal=Genomics |volume=40 |issue= 3 |pages= 470–5 |year= 1997 |pmid= 9073515 |doi= 10.1006/geno.1996.4597 }}
*{{cite journal  | author=Hubbard MJ, McHugh NJ |title=Human ERp29: isolation, primary structural characterisation and two-dimensional gel mapping. |journal=Electrophoresis |volume=21 |issue= 17 |pages= 3785-96 |year= 2001 |pmid= 11271497 |doi= 10.1002/1522-2683(200011)21:17<3785::AID-ELPS3785>3.0.CO;2-2 }}
*{{cite journal  | vauthors=Hubbard MJ, McHugh NJ |title=Human ERp29: isolation, primary structural characterisation and two-dimensional gel mapping. |journal=Electrophoresis |volume=21 |issue= 17 |pages= 3785–96 |year= 2001 |pmid= 11271497 |doi= 10.1002/1522-2683(200011)21:17<3785::AID-ELPS3785>3.0.CO;2-2 }}
*{{cite journal  | author=Jiang LQ, Wen SJ, Wang HY, Chen LY |title=Screening the proteins that interact with calpain in a human heart cDNA library using a yeast two-hybrid system. |journal=Hypertens. Res. |volume=25 |issue= 4 |pages= 647-52 |year= 2003 |pmid= 12358155 |doi=  }}
*{{cite journal  | vauthors=Jiang LQ, Wen SJ, Wang HY, Chen LY |title=Screening the proteins that interact with calpain in a human heart cDNA library using a yeast two-hybrid system. |journal=Hypertens. Res. |volume=25 |issue= 4 |pages= 647–52 |year= 2003 |pmid= 12358155 |doi=10.1291/hypres.25.647 }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Deloukas P, Earthrowl ME, Grafham DV, ''et al.'' |title=The DNA sequence and comparative analysis of human chromosome 10. |journal=Nature |volume=429 |issue= 6990 |pages= 375-81 |year= 2004 |pmid= 15164054 |doi= 10.1038/nature02462 }}
*{{cite journal  | vauthors=Deloukas P, Earthrowl ME, Grafham DV |title=The DNA sequence and comparative analysis of human chromosome 10. |journal=Nature |volume=429 |issue= 6990 |pages= 375–81 |year= 2004 |pmid= 15164054 |doi= 10.1038/nature02462 |display-authors=etal}}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |display-authors=etal}}
*{{cite journal  | author=Bruneel A, Labas V, Mailloux A, ''et al.'' |title=Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. |journal=Proteomics |volume=5 |issue= 15 |pages= 3876-84 |year= 2006 |pmid= 16130169 |doi= 10.1002/pmic.200401239 }}
*{{cite journal  | vauthors=Bruneel A, Labas V, Mailloux A |title=Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. |journal=Proteomics |volume=5 |issue= 15 |pages= 3876–84 |year= 2006 |pmid= 16130169 |doi= 10.1002/pmic.200401239 |display-authors=etal}}
*{{cite journal  | author=Ewing RM, Chu P, Elisma F, ''et al.'' |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue=  |pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 }}
*{{cite journal  | vauthors=Ewing RM, Chu P, Elisma F |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue=  1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 |display-authors=etal}}
*{{cite journal  | author=Takahashi M, Watari E, Shinya E, ''et al.'' |title=Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. |journal=Antiviral Res. |volume=75 |issue= 2 |pages= 152-8 |year= 2007 |pmid= 17395278 |doi= 10.1016/j.antiviral.2007.02.002 }}
*{{cite journal  | vauthors=Takahashi M, Watari E, Shinya E |title=Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. |journal=Antiviral Res. |volume=75 |issue= 2 |pages= 152–8 |year= 2007 |pmid= 17395278 |doi= 10.1016/j.antiviral.2007.02.002 |display-authors=etal}}
}}
}}
{{refend}}
{{refend}}
{{PDB Gallery|geneid=1892}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}

Revision as of 00:18, 31 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial, also known as ECHS1, is a human gene.[1]

The protein encoded by this gene functions in the second step of the mitochondrial fatty acid beta-oxidation pathway. It catalyzes the hydration of 2-trans-enoyl-coenzyme A (CoA) intermediates to L-3-hydroxyacyl-CoAs. The gene product is a member of the hydratase/isomerase superfamily. It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.[1]

Structure

The ECHS1 gene is approximately 11 kb in length, and is composed of eight exons, with exons I and VIII containing the 5'- and 3'-untranslated regions, respectively. There are two major transcription start sites, located 62 and 63 bp upstream of the translation codon, were mapped by primer extension analysis. The 5'-flanking region of the ECHS1 gene is GC-rich and contains several copies of the SP1 binding motive but no typical TATA or CAAT boxes are apparent. Alu repeat elements have been identified within the region -1052/-770 relative to the cap site and in intron 7.[2] The precursor polypeptide contains 290 amino acid residues, with an N-terminal presequence of 29 residues, a 5'-untranslated sequence of 21 bp and a 3'-untranslated sequence of 391 bp.[3]

Function

Enoyl-CoA hydratase (ECH) catalyzes the second step in beta-oxidation pathway of fatty acid metabolism. The enzyme is involved in the formation of a β-hydroxyacyl-CoA thioester. The two catalytic glutamic acid residues are believed to act in concert to activate a water molecule, while Gly-141 is proposed to be involved in substrate activation. There are two potent inhibitors of ECHS, which irreversibly inactivate the enzyme via covalent adduct formation.[4]

Clinical significance

Enoyl-CoA hydratase short chain has been confirmed to interact with STAT3, such that ECHS1 specifically represses STAT3 activity by inhibiting STAT3 phosphorylation.[5] STAT3 can act as both an oncogene and a tumor suppressor. ECHS1 itself has shown to occur in many cancers, particularly in hypatocellular carcinoma (HCC) development;[6] both exogenous and endogenous forms of ECHS1 bind to HBs and induce apoptosis as a result. This means that ECHS1 may be used in the future as a therapy for patients with HBV-related hepatitis or HCC.[7]

References

  1. 1.0 1.1 "Entrez Gene: ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial".
  2. Janssen, U; Davis, E. M.; Le Beau, M. M.; Stoffel, W (1997). "Human mitochondrial enoyl-CoA hydratase gene (ECHS1): Structural organization and assignment to chromosome 10q26.2-q26.3". Genomics. 40 (3): 470–5. doi:10.1006/geno.1996.4597. PMID 9073515.
  3. Kanazawa, M; Ohtake, A; Abe, H; Yamamoto, S; Satoh, Y; Takayanagi, M; Niimi, H; Mori, M; Hashimoto, T (1993). "Molecular cloning and sequence analysis of the cDNA for human mitochondrial short-chain enoyl-CoA hydratase". Enzyme & protein. 47 (1): 9–13. PMID 8012501.
  4. Agnihotri, G; Liu, H. W. (2003). "Enoyl-CoA hydratase. Reaction, mechanism, and inhibition". Bioorganic & Medicinal Chemistry. 11 (1): 9–20. doi:10.1016/s0968-0896(02)00333-4. PMID 12467702.
  5. Chang, Y; Wang, S. X.; Wang, Y. B.; Zhou, J; Li, W. H.; Wang, N; Fang, D. F.; Li, H. Y.; Li, A. L.; Zhang, X. M.; Zhang, W. N. (2013). "ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling". FEBS Letters. 587 (6): 607–13. doi:10.1016/j.febslet.2013.02.005. PMID 23416296.
  6. Zhu, X. S.; Dai, Y. C.; Chen, Z. X.; Xie, J. P.; Zeng, W; Lin, Y. Y.; Tan, Q. H. (2013). "Knockdown of ECHS1 protein expression inhibits hepatocellular carcinoma cell proliferation via suppression of Akt activity". Critical reviews in eukaryotic gene expression. 23 (3): 275–82. doi:10.1615/critreveukaryotgeneexpr.2013007531. PMID 23879543.
  7. Xiao, C. X.; Yang, X. N.; Huang, Q. W.; Zhang, Y. Q.; Lin, B. Y.; Liu, J. J.; Liu, Y. P.; Jazag, A; Guleng, B; Ren, J. L. (2013). "ECHS1 acts as a novel HBs Ag-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells". Cancer Letters. 330 (1): 67–73. doi:10.1016/j.canlet.2012.11.030. PMID 23178449.

Further reading