Teicoplanin: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 126: Line 126:
Once the heptapeptide backbone has been formed, the cyclization of the linear structure is begun.<ref name="Hadatsch, B. 2007">Hadatsch, B.; Butz, D.; Schmiederer, T.; Steudle, J.; Wohlleben, W.; Sussmuth, R.; Stegmann, E. Chemistry & Biology. 2007, 14, 1078-1089.</ref>  Gene disruption studies indicate a cytochrome P450 oxygenase as the enzyme that performs the coupling reactions.  OxyB has been suggested to form the first ring by coupling residues 4 and 6.  OxyA then couples residues 2 and 4, followed by the formation of a C-C bond between residues 5 and 7 by OxyC.  A fourth enzyme catalyzes the coupling of residues 1 and 3, although where this coupling fits into the OxyB/OxyA/OxyC order is not known.  The regioselectivity and [[atropisomer]] selectivity of these probable one-electron coupling reactions has been suggested to be due to the folding and orientation requirements of the partially crossed-linked substrates in the enzyme active site.<ref name="Hadatsch, B. 2007"/>  The coupling reactions are shown below.
Once the heptapeptide backbone has been formed, the cyclization of the linear structure is begun.<ref name="Hadatsch, B. 2007">Hadatsch, B.; Butz, D.; Schmiederer, T.; Steudle, J.; Wohlleben, W.; Sussmuth, R.; Stegmann, E. Chemistry & Biology. 2007, 14, 1078-1089.</ref>  Gene disruption studies indicate a cytochrome P450 oxygenase as the enzyme that performs the coupling reactions.  OxyB has been suggested to form the first ring by coupling residues 4 and 6.  OxyA then couples residues 2 and 4, followed by the formation of a C-C bond between residues 5 and 7 by OxyC.  A fourth enzyme catalyzes the coupling of residues 1 and 3, although where this coupling fits into the OxyB/OxyA/OxyC order is not known.  The regioselectivity and [[atropisomer]] selectivity of these probable one-electron coupling reactions has been suggested to be due to the folding and orientation requirements of the partially crossed-linked substrates in the enzyme active site.<ref name="Hadatsch, B. 2007"/>  The coupling reactions are shown below.


[[Image:Teicoplanin Chem 2.png
[[Image:Teicoplanin Chem 2.png|800px|center|none]]
|800px|center|none|Oxidative coupling of teicoplanin backbone]]


Specific glycosylation has been shown to occur after the formation of the heptpeptide aglycone.<ref>Kaplan, J.; Korty, B.D.; Axelsen, P.H., Loll; P. J. J. Med. Chem. 2001, 44, 1837-1840.</ref>  Data suggest three separate glycosyl transferases are required for the glycosylation of the teicoplanin aglycone.  Two of these glycosyl transferases are involved in the addition of the N-fatty acyl-β-D-glucosamine and N-acetyl-β-D-glucosamine units.  A third mannosyl transferase is responsible for the addition of the D-mannose unit onto residue 7.  The fatty acyl chain is connected by amide bond to the glucosamine moiety by the action of an acyl transferase.  In addition to glycosylation, some genes have been suggested to code for deacetylases.<ref>Ho, J-Y.; Huang, Y-T.; Wu, C-J.; Li, Y-S.; Tsai, M-D.; Li, T-L. J. Am. Chem. Soc. 2006, 128, 13694-13695.</ref>  In addition to the ability to salvage portions of the molecular structure, it provides a way to protect/deprotect the molecule.
Specific glycosylation has been shown to occur after the formation of the heptpeptide aglycone.<ref>Kaplan, J.; Korty, B.D.; Axelsen, P.H., Loll; P. J. J. Med. Chem. 2001, 44, 1837-1840.</ref>  Data suggest three separate glycosyl transferases are required for the glycosylation of the teicoplanin aglycone.  Two of these glycosyl transferases are involved in the addition of the N-fatty acyl-β-D-glucosamine and N-acetyl-β-D-glucosamine units.  A third mannosyl transferase is responsible for the addition of the D-mannose unit onto residue 7.  The fatty acyl chain is connected by amide bond to the glucosamine moiety by the action of an acyl transferase.  In addition to glycosylation, some genes have been suggested to code for deacetylases.<ref>Ho, J-Y.; Huang, Y-T.; Wu, C-J.; Li, Y-S.; Tsai, M-D.; Li, T-L. J. Am. Chem. Soc. 2006, 128, 13694-13695.</ref>  In addition to the ability to salvage portions of the molecular structure, it provides a way to protect/deprotect the molecule.

Latest revision as of 17:19, 7 April 2015

Teicoplanin
Clinical data
Trade namesTargocid
AHFS/Drugs.comInternational Drug Names
Pregnancy
category
Routes of
administration
Intravenous, intramuscular
ATC code
Legal status
Legal status
  • AU: S4 (Prescription only)
  • UK: POM (Prescription only)
Pharmacokinetic data
Bioavailability90% (given IM)
Protein binding90% to 95%
MetabolismNil
Elimination half-life70 to 100 hours
ExcretionRenal (97% unchanged)
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
NIAID ChemDB
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
FormulaVariable
Molar mass1564.3 to 1907.7 g/mol
 ☒N☑Y (what is this?)  (verify)

WikiDoc Resources for Teicoplanin

Articles

Most recent articles on Teicoplanin

Most cited articles on Teicoplanin

Review articles on Teicoplanin

Articles on Teicoplanin in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Teicoplanin

Images of Teicoplanin

Photos of Teicoplanin

Podcasts & MP3s on Teicoplanin

Videos on Teicoplanin

Evidence Based Medicine

Cochrane Collaboration on Teicoplanin

Bandolier on Teicoplanin

TRIP on Teicoplanin

Clinical Trials

Ongoing Trials on Teicoplanin at Clinical Trials.gov

Trial results on Teicoplanin

Clinical Trials on Teicoplanin at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Teicoplanin

NICE Guidance on Teicoplanin

NHS PRODIGY Guidance

FDA on Teicoplanin

CDC on Teicoplanin

Books

Books on Teicoplanin

News

Teicoplanin in the news

Be alerted to news on Teicoplanin

News trends on Teicoplanin

Commentary

Blogs on Teicoplanin

Definitions

Definitions of Teicoplanin

Patient Resources / Community

Patient resources on Teicoplanin

Discussion groups on Teicoplanin

Patient Handouts on Teicoplanin

Directions to Hospitals Treating Teicoplanin

Risk calculators and risk factors for Teicoplanin

Healthcare Provider Resources

Symptoms of Teicoplanin

Causes & Risk Factors for Teicoplanin

Diagnostic studies for Teicoplanin

Treatment of Teicoplanin

Continuing Medical Education (CME)

CME Programs on Teicoplanin

International

Teicoplanin en Espanol

Teicoplanin en Francais

Business

Teicoplanin in the Marketplace

Patents on Teicoplanin

Experimental / Informatics

List of terms related to Teicoplanin

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Teicoplanin is an antibiotic used in the prophylaxis and treatment of serious infections caused by Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and Enterococcus faecalis. It is a semisynthetic glycopeptide antibiotic with a spectrum of activity similar to vancomycin. Its mechanism of action is to inhibit bacterial cell wall synthesis.

Teicoplanin is marketed by Sanofi-Aventis under the trade name Targocid. Other trade names include Teconin marketed by Biocon ltd (India).

Oral teicoplanin has been demonstrated to be effective in the treatment of pseudomembranous colitis and Clostridium difficile-associated diarrhoea, with comparable efficacy with vancomycin.[1]

Its strength is considered to be due to the length of the hydrocarbon chain.[dead link][2]

Susceptibility data

Teicoplanin targets peptidoglycan synthesis making it an effective antimicrobial against Gram-positive bacteria including Staphylococci and Clostridium spp. The following represents MIC susceptibility data for a few medically significant pathogens:

  • Clostridium difficile: 0.06 μg/ml - 0.5 μg/ml
  • Staphylococcus aureus: ≤0.06 μg/ml - ≥128 μg/ml
  • Staphylococcus epidermidis: ≤0.06 μg/ml - 32 μg/ml

[3]

Chemistry

Teicoplanin (TARGOCID, marketed by Sanofi Aventis Ltd) is actually a mixture of several compounds, five major (named teicoplanin A2-1 through A2-5) and four minor (named teicoplanin RS-1 through RS-4).[4] All teicoplanins share a same glycopeptide core, termed teicoplanin A3-1 — a fused ring structure to which two carbohydrates (mannose and N-acetylglucosamine) are attached. The major and minor components also contain a third carbohydrate moietyβ-D-glucosamine — and differ only by the length and conformation of a side-chain attached to it.

The structures of the teicoplanin core and the side-chains that characterize the five major teicoplanin compounds are shown below.

Teicoplanin core (left, black) and side-chains that characterize teicoplanins A2-1 through A2-5 (right). In blue: β-D-glucosamine.
Teicoplanin core (left, black) and side-chains that characterize teicoplanins A2-1 through A2-5 (right). In blue: β-D-glucosamine.

Biosynthesis

Teicoplanin refers to a complex of related natural products isolated from the fermentation broth of a strain of Actinoplanes teichomyceticus,[5] consisting of a group of five structures. These structures possess a common aglycone, or core, consisting of seven amino acids bound by peptide and ether bonds to form a four-ring system. These five structures differ by the identity of the fatty acyl side-chain attached to the sugar. The origin of these seven amino acids in the biosynthesis of teicoplanin was studied by 1H and 13C nuclear magnetic resonance.[6] The studies indicate amino acids AA1, AA2, AA4, AA5, and AA6 are derived from tyrosine, and amino acids AA3 and AA7 are derived from acetate. To be specific, teicoplanin contains 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine residues, a chlorine atom attached on each of the tyrosine residues, and three sugar moieties, N-fatty acyl-β-D-glucosamine, N-acetyl-β-D-glucosamine, and D-mannose.

Gene cluster

The study of the genetic cluster encoding the biosynthesis of teicoplanin identified 49 putative open reading frames (ORFs) involved in the compound's biosynthesis, export, resistance, and regulation. Thirty-five of these ORFs are similar to those found in other glycopeptide gene clusters. The function of each of these genes is described by Li and co-workers.[7] A summary of the gene layout and purpose is shown below.

Gene layout. The genes are numbered. The letters L and R designate transcriptional direction. The presence of the * symbol means a gene is found after NRPs, which are represented by A, B, C, and D. Based on the figure from: Li, T-L.; Huang, F.; Haydock, S. F.; Mironenko, T.; Leadlay, P. F.; Spencer, J. B. Chemistry & Biology. 2004, 11, p. 109.

[11-L] [10-L] [9-R] [8-R] [7-R] [6-R] [5-R] [4-L][3-L] [2-L] [1-R] [A-R] [B-R] [C-R] [D-R] [1*-R] [2*-R] [3*-R] [4*-R] [5*-R] [6*-R] [7*-R] [8*-R] [9*-R] [10*-R] [11*-R] [12*-R] [13*-R] [14*-R] [15*-R] [16*-R] [17*-R] [18*-R] [19*-R] [20*-R] [21*-R] [22*-R] [23*-R] [24*-R] [25*-L] [26*-L] [27*-R] [28*-R] [29*-R] [30*-R][31*-R] [32*-L] [33*-L] [34*-R]

Enzyme produced by gene sequence Regulatory proteins Other enzymes Resistant enzymes Β-hydroxy-tyrosine and 4-hydroxy-phenylglycin biosynthetic enzymes Glycosyl transferases Peptide synthetases P450 oxygenases Halogenase 3,5-dihydroxy phenylglycin biosynthetic enzymes
Genes 11, 10, 3, 2, 15*, 16*, 31* 9, 8, 1*, 2*, 4*, 11*, 13*, 21*, 26*, 27*, 30*, 32*, 33*, 34* 7, 6, 5 4, 12*, 14*, 22*, 23*, 24*, 25*, 28*, 29* 1, 3*, 10* A, B, C, D 5*, 6*, 7*, 9* 8* 17*, 18*, 19*, 20*, 23*

Heptapeptide backbone synthesis

Analysis indicated tyrosine and three types of nonproteinogenic amino acids, (S)-4-hydroxyphenylglycine, 3,5-dihydroxyphenylglycine, and β-hydroxytyrosine as the building blocks of the teicoplanin group of glycopeptides. In all, six of the seven total amino acids of the teicoplanin backbone are composed of nonproteinogenic or modified amino acids. Eleven enzymes are coordinatively induced to produce these six required residues.[8] Teicoplanin contains two chlorinated positions, 2 (3-Cl-Tyr) and 6 (3-Cl-β-Hty). The putative halogenase Orf8* has been proposed to catalyze the halogenation on both amino acids. Chlorination is thought to occur at a very early point in the biosynthesis prior to phenolic oxidative coupling, with the possibility of tyrosine or β-hydroxytyrosine being the substrate of chlorination.

The biosynthesis of the heptapeptide backbone is carried out by four nonribosomal peptide synthetases designated TeiA, TeiB, TeiC, and TeiD. Each of the modules has a domain for amino acid selection and activation as the aminoacyl-AMP. The catalytic domains in modules one and three of the nonribosomal peptide synthetase assembly line select and activate (S)-4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine.[8] In addition to these modules for amino acid selection and activation, each module has a thiolation domain modified with phosphopantetheine to provide a thiol for covalent aminoacyl-S-enzyme formation.

Modification after heptapeptide backbone formation

Once the heptapeptide backbone has been formed, the cyclization of the linear structure is begun.[9] Gene disruption studies indicate a cytochrome P450 oxygenase as the enzyme that performs the coupling reactions. OxyB has been suggested to form the first ring by coupling residues 4 and 6. OxyA then couples residues 2 and 4, followed by the formation of a C-C bond between residues 5 and 7 by OxyC. A fourth enzyme catalyzes the coupling of residues 1 and 3, although where this coupling fits into the OxyB/OxyA/OxyC order is not known. The regioselectivity and atropisomer selectivity of these probable one-electron coupling reactions has been suggested to be due to the folding and orientation requirements of the partially crossed-linked substrates in the enzyme active site.[9] The coupling reactions are shown below.

Specific glycosylation has been shown to occur after the formation of the heptpeptide aglycone.[10] Data suggest three separate glycosyl transferases are required for the glycosylation of the teicoplanin aglycone. Two of these glycosyl transferases are involved in the addition of the N-fatty acyl-β-D-glucosamine and N-acetyl-β-D-glucosamine units. A third mannosyl transferase is responsible for the addition of the D-mannose unit onto residue 7. The fatty acyl chain is connected by amide bond to the glucosamine moiety by the action of an acyl transferase. In addition to glycosylation, some genes have been suggested to code for deacetylases.[11] In addition to the ability to salvage portions of the molecular structure, it provides a way to protect/deprotect the molecule.

References

  1. de Lalla F, Nicolin R, Rinaldi E, Scarpellini P, Rigoli R, Manfrin V, Tramarin A (1992). "Prospective study of oral teicoplanin versus oral vancomycin for therapy of pseudomembranous colitis and Clostridium difficile-associated diarrhea". Antimicrob Agents Chemother. 36 (10): 2192–6. doi:10.1128/AAC.36.10.2192. PMC 245474. PMID 1444298.
  2. Gilpin M, Milner P (1997). "Resisting changes -- Over the past 40 years the glycopeptide antibiotics have played a crucial role in treating bacterial infections. But how long can it continue ?". Royal Society of Chemistry. Retrieved 2006-10-15. - includes picture of Teicoplanin's structure.
  3. http://www.toku-e.com/Assets/MIC/Teicoplanin.pdf
  4. Bernareggi A, Borghi A, Borgonovi M, Cavenaghi L, Ferrari P, Vékey K, Zanol M, Zerilli L (1 August 1992). "Teicoplanin metabolism in humans". Antimicrob Agents Chemother. 36 (8): 1744–9. doi:10.1128/AAC.36.8.1744. PMC 192040. PMID 1416858.
  5. Jung HM, Jeya M, Kim SY, Moon HJ, Kumar Singh R, Zhang YW, Lee JK. Appl Microbiol Biotechnol. 2009 Sep;84(3):417-28
  6. Heydorn, A.; Peterson, B. O.; Duus, J.; Bergmann, S.; Suhr-Jessen, T.; Nielson, J. Journal of Biological Chemistry. 2000, 275, 6201-6206.
  7. Li, T-L.; Huang, F.; Haydock, S. F.; Mironenko, T.; Leadlay, P. F.; Spencer, J. B. Chemistry & Biology. 2004, 11, 107-119.
  8. 8.0 8.1 Kahne, D.; Leimkuhler, C.; Lu, W.; Walsh, C. Chem. Rev. 2005, 105, 425-448.
  9. 9.0 9.1 Hadatsch, B.; Butz, D.; Schmiederer, T.; Steudle, J.; Wohlleben, W.; Sussmuth, R.; Stegmann, E. Chemistry & Biology. 2007, 14, 1078-1089.
  10. Kaplan, J.; Korty, B.D.; Axelsen, P.H., Loll; P. J. J. Med. Chem. 2001, 44, 1837-1840.
  11. Ho, J-Y.; Huang, Y-T.; Wu, C-J.; Li, Y-S.; Tsai, M-D.; Li, T-L. J. Am. Chem. Soc. 2006, 128, 13694-13695.