Methemoglobinemia risk factors: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
{{Methemoglobinemia}}
{{Methemoglobinemia}}
{{CMG}}; {{AE}}{{Aksiniya K. Stevasarova, M.D.}}
{{CMG}}; {{AE}}{{AKS}}
 


==Overview==
==Overview==


* The risk factors for the formation of [[methemoglobinemia]] can be divided into two groups: congenital risk factors and acquired risk factors.
Some of the risk factors for the formation of [[methemoglobinemia] include topical use of various anesthetics, drinking contaminated with nitrates water or eating solid food contaminated with nitrates.  
 
'''Congenital Risk Factors for Methemoglobinemia'''
 
*There are three main [[congenital]] conditions that lead to [[methemoglobinemia]]:
 
1. [[Cytochrome b5 reductase deficiency]] and [[pyruvate kinase deficiency]]
 
2. [[G6PD deficiency]]
 
3. Presence of abnormal hemoglobin ([[Hb M]])
 
 
'''Acquired Risk Factors for Methemoglobinemia'''
 
*Some of the most common risk factors include different [[oxidant drugs]], [[toxins]] and [[chemicals]].


==Risk Factors==   
==Risk Factors==   


'''Congenital Risk Factors for Methemoglobinemia'''
'''1. Anesthetics'''
 
*There are three main congenital risk factors that lead to methemoglobinemia:
 
1. [[Cytochrome b5 reductase deficiency]] and [[pyruvate kinase deficiency]]
 
2. [[G6PD deficiency]]
 
3. Presence of abnormal hemoglobin ([[Hb M]])
 
 
*Both [[cytochrome b5 reductase deficiency]] and [[pyruvate kinase deficiency]] can lead to [[NADH deficiency]] which in turn will lead to decreased ability to remove MetHb from the blood. [[Cytochrome b5 reductase deficiency]] is an [[autosomal recessive disorder]] with at least 2 forms that we know of.
The most common form, is the [[Ib5R deficiency]], where [[cyt b5 reductase]] is absent only in [[RBCs]], and the levels of [[MetHb]] are around 10% to 35%.  <ref>{{Rev Bras Anestesiol. 2008 Nov-Dec;58(6):651-64.
Methemoglobinemia: from diagnosis to treatment.
[Article in English, Portuguese]
do Nascimento TS1, Pereira RO, de Mello HL, Costa J.  pmid=PMID:19082413 }}</ref>
 
*The second type, which is much less common, is the [[IIb5R deficiency]], where [[MetHb]] levels vary between 10% and 15% and the [[cyt
b5 reductase]] is absent in all cells. This form is associated with mental retardation, [[microcephaly]], and other neurologic problems. The lifespan of the affected individuals is greatly affected and patients usually die very young.  <ref>{{J Pediatr Hematol Oncol. 2012 Aug;34(6):457-60. doi: 10.1097/MPH.0b013e318257a492.
Methemoglobin reductase deficiency: novel mutation is associated with a disease phenotype of intermediate severity.
Percy MJ1, Barnes C, Crighton G, Leventer RJ, Wynn R, Lappin TR. PMID: 22627575 }}</ref> 
 
*[[Congenital]] deficiency in [[G6PD]] can lead to decreased levels of [[NADPH]] and thus compromising the function of the [[diaphorase II enzyme]] system. <ref>{{BMJ Case Rep. 2018 Mar 28;2018. pii: bcr-2017-223369. doi: 10.1136/bcr-2017-223369.
Severe acute haemolytic anaemia associated with severe methaemoglobinaemia in a G6PD-deficient man.
Rehman A1,2, Shehadeh M2, Khirfan D2, Jones A2. PMID: 29592989 }}</ref>
 
*Abnormal hemoglobins like [[Hb M]], including [[Hb Ms]], [[Hb MIwate]], [[Hb MBoston]], [[Hb MHyde Park]], and [[Hb MSaskatoon]], an [[autosomal dominant condition]], can also lead to [[methemoglobinemia]]. In case of [[amino acid]] substitution in the [[alpha-chain of hemoglobin]], we observe [[cyanosis]] at birth, and infants with [[beta chain amino acid]] substitution will present with [[cyanosis]] later around 4-6 months of age. <ref>{{J Pediatr Hematol Oncol. 2016 Apr;38(3):173-5. doi: 10.1097/MPH.0000000000000489.
Hemoglobin M Disease as a Cause of Cyanosis in a Newborn.
Alonso-Ojembarrena A1, Lubián-López SP. pmid=PMID:26694193  }}</ref>
 
 
 
'''Acquired Risk Factors for Methemoglobinemia'''
 
*Some of the most common risk factors that can cause excessive formation of methemoglobin include different [[oxidant drugs]], [[toxins]] and [[chemicals]].<ref>{{Med Toxicol. 1986 Jul-Aug;1(4):253-60. Drug- and chemical-induced methaemoglobinaemia. Clinical features and management. Hall AH, Kulig KW, Rumack BH.pmid=PMID: 3537620}}</ref>  <ref>{{Rev Bras Anestesiol. 2008 Nov-Dec;58(6):651-64. Methemoglobinemia: from diagnosis to treatment. [Article in English, Portuguese] do Nascimento TS1, Pereira RO, de Mello HL, Costa J. pmid=19082413}}</ref>    <ref>{{Rev Bras Anestesiol. 2008 Nov-Dec;58(6):651-64. Methemoglobinemia: from diagnosis to treatment. [Article in English, Portuguese] do Nascimento TS1, Pereira RO, de Mello HL, Costa J. pmid=19082413}}</ref>
 
'''1.''' '''Drug Induced'''
 
• [[Anesthetics]]<ref>{{ J Emerg Med. 2018 Mar 5. pii: S0736-4679(18)30095-7. doi: 10.1016/j.jemermed.2018.01.039. [Epub ahead of print]
Local Anesthetic-Induced Methemoglobinemia During Pregnancy: A Case Report and Evaluation of Treatment Options.
Faust AC1, Guy E1, Baby N2, Ortegon A3.pmid=29519718}}</ref> like [[benzocaine]]<ref>{{ Ann Pharmacother. 1994 May;28(5):643-9.
Benzocaine-induced methemoglobinemia: report of a severe reaction and review of the literature.
Rodriguez LF1, Smolik LM, Zbehlik AJ.pmid=8069004 }}</ref>, [[lidocaine]]<ref>{{Drug Saf Case Rep. 2018 Apr 7;5(1):15. doi: 10.1007/s40800-018-0081-4.
Acquired Methemoglobinemia Associated with Topical Lidocaine Administration: A Case Report.
Gay HC1,2, Amaral AP3. pmid=PMID: 29627919 }}</ref>, [[prilocaine]]<ref>{{Isr Med Assoc J. 2014 Apr;16(4):250-4.
Methemoglobinemia induced by lidocaine-prilocaine cream.
Shamriz O, Cohen-Glickman I, Reif S, Shteyer E.pmid=24834764}}</ref>
 
• [[Methylene blue]]
 
• [[Nitric oxide]]
 
• [[Amyl Nitrate]]
 
• [[Nitroglycerin]]
 
• [[Antimalarial drugs]] like [[Primaquine phosphate]] (in [[nicotinamide adenine dinucleotide]] ([[NADH]]) methemoglobin reductase deficient individuals)
 
• [[Rasburicase]]  <ref>{{Curr Drug Saf. 2017;12(1):13-18. doi: 10.2174/1574886312666170111151246.
Rasburicase-Induced Methemoglobinemia in a Patient with Glucose-6- Phosphate Dehydrogenase Deficiency.
Khan M, Paul S, Farooq S, Oo TH, Ramshesh P, Jain N1. pmid=28078984}}</ref>
 
• [[Sulfasalazine]]
 
• [[Dapsone]]
 
• [[Trimethoprim]]
 
• [[Sulfonamides]]


[[Aniline dyes]]<ref>{{Case Rep Emerg Med. 2015;2015:208732. doi: 10.1155/2015/208732. Epub 2015 Mar 12.
Topical [[benzocaine]] and [[lidocaine]] are commonly used in general anesthesia to facilitate the intubation in awake patients and can cause [[methemoglobinemia]].<ref name="pmid9305310">{{cite journal| author=Cooper HA| title=Methemoglobinemia caused by benzocaine topical spray. | journal=South Med J | year= 1997 | volume= 90 | issue= 9 | pages= 946-8 | pmid=9305310 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9305310  }} </ref> <ref name="pmid17694687">{{cite journal| author=Lin SK, Wu JL, Lee YL, Tsao SL| title=Methemoglobinemia induced by exposure to topical benzocaine for an awake nasal intubation--a case report. | journal=Acta Anaesthesiol Taiwan | year= 2007 | volume= 45 | issue= 2 | pages= 111-6 | pmid=17694687 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17694687  }} </ref> <ref name="pmid27139292">{{cite journal| author=Lipton M, Szlam SM, Barker K, Benitez JG| title=Methemoglobinemia Secondary to Topical Benzocaine Application to Gastrostomy Site. | journal=Pediatr Emerg Care | year= 2016 | volume= 32 | issue= 5 | pages= 312-4 | pmid=27139292 | doi=10.1097/PEC.0000000000000800 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=27139292  }} </ref>
P-chloroaniline poisoning causing methemoglobinemia: a case report and review of the literature.
Messmer AS1, Nickel CH1, Bareiss D1. pmid=25861488 PMCID: PMC4377359 }}</ref>  


• [[Metoclopramide]]
'''2. Contaminated well water'''


[[Chlorates and Bromates]]
In premature infants and infants younger than 4 months, contaminated with nitrates water can induce [[methemoglobinemia]]. Most cases occur due to contaminated well water by nitrates sprayed on different vegetables etc. <ref name="pmid14676514">{{cite journal| author=Brunato F, Garziera MG, Briguglio E| title=A severe methaemoglobinemia induced by nitrates: a case report. | journal=Eur J Emerg Med | year= 2003 | volume= 10 | issue= 4 | pages= 326-30 | pmid=14676514 | doi=10.1097/01.mej.0000103472.32882.db | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14676514  }} </ref>ref> [www.epa.gov/dwstandardsregulations]</ref>


'''2. Contaminated well water''' (in premature infants and infants younger than 4 months) <ref>{{Eur J Emerg Med. 2003 Dec;10(4):326-30.
'''3. Solid foods'''  
A severe methaemoglobinemia induced by nitrates: a case report.
Brunato F1, Garziera MG, Briguglio E. pmid=14676514 }}</ref>  <ref> [www.epa.gov/dwstandardsregulations]</ref>


'''3. Solid foods''' (not well cooked vegetables high in nitrates in premature infants and infants younger than 4 months) <ref> [www.fda.gov/Drugs/DrugSafety/ucm250024.htm]</ref>  <ref> [www.fda.gov/forconsumers/consumerupdates/ucm306062.htm]</ref>
Solid foods that are not well cooked, like vegetables high in nitrates, can induce [[methemoglobinemia]] in premature infants and infants younger than 4 months.
  <ref> [www.fda.gov/Drugs/DrugSafety/ucm250024.htm]</ref>  <ref> [www.fda.gov/forconsumers/consumerupdates/ucm306062.htm]</ref>


==References==
==References==

Latest revision as of 13:56, 15 August 2018

Methemoglobinemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Methemoglobinemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Methemoglobinemia risk factors On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Methemoglobinemia risk factors

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Methemoglobinemia risk factors

on Methemoglobinemia risk factors

Methemoglobinemia risk factors in the news

Blogs on Methemoglobinemia risk factors

Directions to Hospitals Treating Methemoglobinemia

Risk calculators and risk factors for Methemoglobinemia risk factors

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aksiniya Stevasarova, M.D.

Overview

Some of the risk factors for the formation of [[methemoglobinemia] include topical use of various anesthetics, drinking contaminated with nitrates water or eating solid food contaminated with nitrates.

Risk Factors

1. Anesthetics

Topical benzocaine and lidocaine are commonly used in general anesthesia to facilitate the intubation in awake patients and can cause methemoglobinemia.[1] [2] [3]

2. Contaminated well water

In premature infants and infants younger than 4 months, contaminated with nitrates water can induce methemoglobinemia. Most cases occur due to contaminated well water by nitrates sprayed on different vegetables etc. [4]ref> [www.epa.gov/dwstandardsregulations]</ref>

3. Solid foods

Solid foods that are not well cooked, like vegetables high in nitrates, can induce methemoglobinemia in premature infants and infants younger than 4 months.

[5]  [6]

References

  1. Cooper HA (1997). "Methemoglobinemia caused by benzocaine topical spray". South Med J. 90 (9): 946–8. PMID 9305310.
  2. Lin SK, Wu JL, Lee YL, Tsao SL (2007). "Methemoglobinemia induced by exposure to topical benzocaine for an awake nasal intubation--a case report". Acta Anaesthesiol Taiwan. 45 (2): 111–6. PMID 17694687.
  3. Lipton M, Szlam SM, Barker K, Benitez JG (2016). "Methemoglobinemia Secondary to Topical Benzocaine Application to Gastrostomy Site". Pediatr Emerg Care. 32 (5): 312–4. doi:10.1097/PEC.0000000000000800. PMID 27139292.
  4. Brunato F, Garziera MG, Briguglio E (2003). "A severe methaemoglobinemia induced by nitrates: a case report". Eur J Emerg Med. 10 (4): 326–30. doi:10.1097/01.mej.0000103472.32882.db. PMID 14676514.
  5. [www.fda.gov/Drugs/DrugSafety/ucm250024.htm]
  6. [www.fda.gov/forconsumers/consumerupdates/ucm306062.htm]

Template:WS Template:WH