Western equine encephalitis

Jump to navigation Jump to search

WikiDoc Resources for Western equine encephalitis

Articles

Most recent articles on Western equine encephalitis

Most cited articles on Western equine encephalitis

Review articles on Western equine encephalitis

Articles on Western equine encephalitis in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Western equine encephalitis

Images of Western equine encephalitis

Photos of Western equine encephalitis

Podcasts & MP3s on Western equine encephalitis

Videos on Western equine encephalitis

Evidence Based Medicine

Cochrane Collaboration on Western equine encephalitis

Bandolier on Western equine encephalitis

TRIP on Western equine encephalitis

Clinical Trials

Ongoing Trials on Western equine encephalitis at Clinical Trials.gov

Trial results on Western equine encephalitis

Clinical Trials on Western equine encephalitis at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Western equine encephalitis

NICE Guidance on Western equine encephalitis

NHS PRODIGY Guidance

FDA on Western equine encephalitis

CDC on Western equine encephalitis

Books

Books on Western equine encephalitis

News

Western equine encephalitis in the news

Be alerted to news on Western equine encephalitis

News trends on Western equine encephalitis

Commentary

Blogs on Western equine encephalitis

Definitions

Definitions of Western equine encephalitis

Patient Resources / Community

Patient resources on Western equine encephalitis

Discussion groups on Western equine encephalitis

Patient Handouts on Western equine encephalitis

Directions to Hospitals Treating Western equine encephalitis

Risk calculators and risk factors for Western equine encephalitis

Healthcare Provider Resources

Symptoms of Western equine encephalitis

Causes & Risk Factors for Western equine encephalitis

Diagnostic studies for Western equine encephalitis

Treatment of Western equine encephalitis

Continuing Medical Education (CME)

CME Programs on Western equine encephalitis

International

Western equine encephalitis en Espanol

Western equine encephalitis en Francais

Business

Western equine encephalitis in the Marketplace

Patents on Western equine encephalitis

Experimental / Informatics

List of terms related to Western equine encephalitis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Anthony Gallo, B.S. [2]

Synonyms and keywords: WEE; West equine encephalitis;

Overview

Historical Perspective

Western equine encephalitis was first identified by Karl Friedrich Meyer, an American scientist of Swiss origin, in 1930 following an epizootic outbreak in horses in the San Joaquin Valley in California.[1]

Classification

Western equine encephalitis may be classified according to location of the disease into 2 subtypes: systemic or encephalitic. Western equine encephalitis may also be classified according to neuroinvasiveness of the disease into 2 subtypes: neuroinvasive and non-neuroinvasive. Western equine encephalitis belongs to the Group IV positive-sense ssRNA virus within the Togaviridae family of viruses, and the genus Alphavirus. Western equine encephalitis is closely related to eastern equine encephalitis virus and Venezuelan equine encephalitis virus.

Pathophysiology

Western equine encephalitis virus is usually transmitted via mosquitos to the human host. Western equine encephalitis virus contains positive-sense viral RNA; this RNA has its genome directly utilized as if it were mRNA, producing a single protein which is modified by host and viral proteins to form the various proteins needed for replication. The following table is a summary of the western equine encephalitis virus:[2]

Characteristic Data
Nucleic acid RNA
Sense ssRNA(+)
Virion Enveloped
Capsid Spherical
Symmetry Yes; T=4 icosahedral
Capsid monomers 240
Monomer length (diameter) 65-70 nm
Additional envelope information 80 spikes; each spike is a trimer of E1/E2 proteins
Genome shape Linear
Genome length 11-12 kb
Nucleotide cap Yes
Polyadenylated tail Yes
Incubation period 4-10 days

Western equine encephalitis is contracted by the bite of an infected mosquito, primarily Culiseta melanura and Culex tarsalis. The virus is maintained in a cycle between either of the mosquitos and avian hosts in freshwater hardwood swamps. Neither are an important vector of western equine virus to humans because both feed almost exclusively on birds. Transmission to humans requires mosquito species capable of creating a "bridge" between infected birds and uninfected mammals, such as some Aedes, Coquillettidia, and other Culex species. The incubation period is 7-21 days.[3] Humans and horses are dead-end hosts for the virus, meaning there is an insufficient amount of western equine encephalitis virus in the blood stream to infect a mosquito. Many cases in horses are fatal. There is no known transmission between horses and humans.[4] Recent studies have demonstrated other equine, such as mules and donkeys, and other animals, such as pigs, reptiles, amphibians, and rodents, can be infected.

Western equine encephalitis virus is transmitted in the following pattern:[2]

  1. Attachment of the viral E glycoprotein to host receptors mediates clathrin-mediated endocytosis of virus into the host cell.
  2. Fusion of virus membrane with the host cell membrane. RNA genome is released into the cytoplasm.
  3. The positive-sense ssRNA virus is translated into a polyprotein, which is cleaved into non-structural proteins necessary for RNA synthesis (replication and transcription).
  4. Replication takes place in cytoplasmic viral factories at the surface of endosomes. A dsRNA genome is synthesized from the genomic ssRNA(+).
  5. The dsRNA genome is transcribed thereby providing viral mRNAs (new ssRNA(+) genomes).
  6. Expression of the subgenomic RNA (sgRNA) gives rise to the structural proteins.
  7. Virus assembly occurs at the endoplasmic reticulum.
  8. Virions bud at the endoplasmic reticulum, are transported to the Golgi apparatus, and then exit the cell via the secretory pathway.

Causes

Western equine encephalitis may be caused by western equine encephalitis virus.

Differentiating Western equine encephalitis from Other Diseases

Western equine encephalitis virus must be differentiated from other diseases that cause fever, headache, seizures, and altered mental status, such as:[5][6][7]

Disease Findings
Eastern equine encephalitis Eastern eqyube encephalitis presents with acute inflammation of the brain, caused by an arboviral infection; it is less severe than Eastern equine encephalitis. Other findings include fever, nausea, headache, vomiting, photophobia, seizures, and coma.
Venezuelan equine encephalitis Venezuelan equine encephalitis presents with acute inflammation of the brain, caused by an arboviral infection; complications include severe brain damage. Other findings include fever, nausea, headache, photophobia, seizures, and coma.
Vector-borne encephalitis Vector-borne encephalitis presents with acute inflammation of the brain, caused by a bacterial infection; complications include severe brain damage as the inflamed brain pushes against the skull, potentially leading to mortality.
Viral encephalitis Viral encephalitis presents with acute inflammation of the brain, caused by a viral infection; complications include severe brain damage as the inflamed brain pushes against the skull, potentially leading to mortality.
Encephalopathy Encephalopathy presents with steady depression, generalized seizures. Generally absent are fever, headache, leukocytosis, and pleocytosis; MRI often appears normal.
Meningitis Meningitis presents with headache, altered mental status, and inflammation of the meninges, which may develop in the setting of an infection, physical injury, cancer, or certain drugs; it may have an indolent evolution, resolving on its own, or may present as an rapidly evolving inflammation, causing neurologic damage and possible mortality.
Brain abscess Brain abscess presents with an abscess in the brain caused by the inflammation and accumulation of infected material from local or remote infectious areas of the body; the infectious agent may also be introduced as a result of head trauma or neurological procedures.
Acute disseminated encephalomyelitis (ADEM) Acute disseminated encephalomyelitis presents with scattered foci of demyelination and perivenular inflammation; it can cause focal neurological signs and decreased ability to focus.

Epidemiology and Demographics

  • The prevalence of [disease name] is approximately [number or range] per 100,000 individuals worldwide.
  • In [year], the incidence of [disease name] was estimated to be [number or range] cases per 100,000 individuals in [location].

Age

  • Patients of all age groups may develop [disease name].
  • [Disease name] is more commonly observed among patients aged [age range] years old.
  • [Disease name] is more commonly observed among [elderly patients/young patients/children].

Gender

  • [Disease name] affects men and women equally.
  • [Gender 1] are more commonly affected with [disease name] than [gender 2].
  • The [gender 1] to [Gender 2] ratio is approximately [number > 1] to 1.

Race

  • There is no racial predilection for [disease name].
  • [Disease name] usually affects individuals of the [race 1] race.
  • [Race 2] individuals are less likely to develop [disease name].

Risk Factors

  • Common risk factors in the development of [disease name] are [risk factor 1], [risk factor 2], [risk factor 3], and [risk factor 4].

Natural History, Complications and Prognosis

  • The majority of patients with [disease name] remain asymptomatic for [duration/years].
  • Early clinical features include [manifestation 1], [manifestation 2], and [manifestation 3].
  • If left untreated, [#%] of patients with [disease name] may progress to develop [manifestation 1], [manifestation 2], and [manifestation 3].
  • Common complications of [disease name] include [complication 1], [complication 2], and [complication 3].
  • Prognosis is generally [excellent/good/poor], and the [1/5/10­year mortality/survival rate] of patients with [disease name] is approximately [#%].

Diagnosis

Diagnostic Criteria

  • The diagnosis of [disease name] is made when at least [number] of the following [number] diagnostic criteria are met:
  • [criterion 1]
  • [criterion 2]
  • [criterion 3]
  • [criterion 4]

Symptoms

  • [Disease name] is usually asymptomatic.
  • Symptoms of [disease name] may include the following:
  • [symptom 1]
  • [symptom 2]
  • [symptom 3]
  • [symptom 4]
  • [symptom 5]
  • [symptom 6]

Physical Examination

  • Patients with [disease name] usually appear [general appearance].
  • Physical examination may be remarkable for:
  • [finding 1]
  • [finding 2]
  • [finding 3]
  • [finding 4]
  • [finding 5]
  • [finding 6]

Laboratory Findings

  • There are no specific laboratory findings associated with [disease name].
  • A [positive/negative] [test name] is diagnostic of [disease name].
  • An [elevated/reduced] concentration of [serum/blood/urinary/CSF/other] [lab test] is diagnostic of [disease name].
  • Other laboratory findings consistent with the diagnosis of [disease name] include [abnormal test 1], [abnormal test 2], and [abnormal test 3].

Imaging Findings

  • There are no [imaging study] findings associated with [disease name].
  • [Imaging study 1] is the imaging modality of choice for [disease name].
  • On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
  • [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

  • [Disease name] may also be diagnosed using [diagnostic study name].
  • Findings on [diagnostic study name] include [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

  • There is no treatment for [disease name]; the mainstay of therapy is supportive care.
  • The mainstay of therapy for [disease name] is [medical therapy 1] and [medical therapy 2].
  • [Medical therapy 1] acts by [mechanism of action 1].
  • Response to [medical therapy 1] can be monitored with [test/physical finding/imaging] every [frequency/duration].

Surgery

  • Surgery is the mainstay of therapy for [disease name].
  • [Surgical procedure] in conjunction with [chemotherapy/radiation] is the most common approach to the treatment of [disease name].
  • [Surgical procedure] can only be performed for patients with [disease stage] [disease name].

Prevention

  • There are no primary preventive measures available for [disease name].
  • Effective measures for the primary prevention of [disease name] include [measure1], [measure2], and [measure3].
  • Once diagnosed and successfully treated, patients with [disease name] are followed-up every [duration]. Follow-up testing includes [test 1], [test 2], and [test 3].

References

  1. Meyer KF, Haring CM, Howitt B (1931). "THE ETIOLOGY OF EPIZOOTIC ENCEPHALOMYELITIS OF HORSES IN THE SAN JOAQUIN VALLEY, 1930". Science. 74 (1913): 227–8. doi:10.1126/science.74.1913.227. PMID 17834966.
  2. 2.0 2.1 Alphavirus. SIB Swiss Institute of Bioinformatics. http://viralzone.expasy.org/viralzone/all_by_species/625.html Accessed on March 15, 2016
  3. Western Equine Encephalomyelitis. Los Angeles County West Vector & Vector-Borne Disease Control District. http://www.lawestvector.org/wee.htm Accessed on March 22, 2016.
  4. Eastern Equine Encephalitis Virus (EEEV). Illinois Department of Public Health (2010) http://www.idph.state.il.us/public/hb/hb_eee.htm Accessed on March 15, 2016.
  5. M.D. JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, Expert Consult Premium Edition. Saunders; 2014.
  6. Kennedy PG (2004). "Viral encephalitis: causes, differential diagnosis, and management". J Neurol Neurosurg Psychiatry. 75 Suppl 1: i10–5. PMC 1765650. PMID 14978145.
  7. Arboviral Infections (arthropod-borne encephalitis, eastern equine encephalitis, St. Louis encephalitis, California encephalitis, Powassan encephalitis, West Nile encephalitis). New York State Department of Health (2006). https://www.health.ny.gov/diseases/communicable/arboviral/fact_sheet.htm Accessed on February 23, 2016