User:Matt Pijoan

Revision as of 15:13, 2 October 2018 by Matt Pijoan (talk | contribs)
Jump to navigation Jump to search


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Hannan Javed, M.D.[2]

Overview

Vascular Anomalies
Vascular Tumors Vascular Malformations
Benign

Locally aggressive or

Borderline

Malignant

Simple Combined° of major named vessels associated with other anomalies
Capillary malformations

Lymphatic malformations

Venous malformations

Arteriovenous malformations*

Arteriovenous fistula*

Capillary venous malformation , Capillary lymphatic malformation

Lymphatic venous malformation, Capillary lymphatic venous malformation

Capillary arteriovenous malformation

Capillary lymphatic arteriovenous malformation

others

See details See list

° defined as two or more vascular malformations found in one lesion

* high flow lesions

Classification

Classification of Vascular Malformations

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vascular malformations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simple
 
 
 
 
 
 
 
Combined
 
 
 
 
 
 
 
 
 
of major named vessels
 
 
 
 
 
 
 
asscoiated with other anomalies
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Combined vascular malformations*
CM + VMCapillary-venous malformationCVM
CM + LMCapillary-lymphatic malformationCLM
CM + AVMCapillary-arteriovenous malformationCAVM
LM + VMLymphatic-venous malformationLVM
CM + LM + VMCapillary-lymphatic-venous malformationCLVM
CM + LM + AVMCapillary-lymphatic-arteriovenous malformationCLVM
CM + VM + AVMCapillary-venous-arteriovenous malformationCVAVM
CM + LM + VM + AVMCapillary-lymphatic-venous-arteriovenous malformationCLVAVM
 
 
 
 
 
 
 
 
 
Anomalies of major named vessels
(also known as "channel type" or "truncal" vascular malformations)
 
 
 
 
 
 
 
Vascular malformations associated with other anomalies
Klippel-Trenaunay syndromeCM + VM +/-LM + limb overgrowth
Parke's Weber syndromeCM + AVF + limb overgrowth
Servelle-Martorell syndromeLimb VM + bone undergrowth
Sturge-Weber syndromeFacial + leptomeningeal CM + eye anomalies +/-bone and/or soft tissue overgrowth
Maffucci syndromeVM +/-spindle-cell hemangioma + enchondroma
CLOVES syndromeLM + VM + CM +/-AVM+ lipomatous overgrowth
Proteus syndromeCM, VM and/or LM + asymmetrical somatic overgrowth
Bannayan-Riley-Ruvalcaba sdlower lip CM + face and neck LM + asymmetry and partial/generalized overgrowth
Limb CM + congenital non-progressive limb overgrowth
Macrocephaly-CM (M-CM / MCAP)
Microcephaly-CM (MICCAP)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Capillary malformations
 
 
Lymphatic malformations
 
 
Venous malformations
 
 
Arteriovenous malformations
 
 
Arteriovenous fistula
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nevus simplex / salmon patch, “angel kiss”, “stork bite”
 
 
 
Common (cystic) LM
Macrocystic LM
Microcystic LM
Mixed cystic LM
 
 
 
Common VM
 
 
 
Sporadic
 
 
 
Sporadic
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cutaneous and/or mucosal CM (also known as “port-wine” stain)
Nonsyndromic CM
CM with CNS and/or ocular anomalies (Sturge-Weber syndrome)
CM with bone and/or soft tissues overgrowth
Diffuse CM with overgrowth (DCMO)
 
 
 
Generalized lymphatic anomaly (GLA)
Kaposiform lymphangiomatosis (KLA)
 
 
 
Familial VM cutaneo-mucosal (VMCM)
 
 
 
In HHT
 
 
 
In HHT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reticulate CM
CM of MIC-CAP (microcephaly-capillary malformation)
CM of MCAP (megalencephaly-capillary malformation-polymicrogyria)
 
 
 
LM in Gorham-Stout disease
 
 
 
Blue rubber bleb nevus (Bean) syndrome VM
 
 
 
In CM-AVM
 
 
 
In CM-AVM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CM of CM-AVM
 
 
 
Channel type LM
 
 
 
Glomuvenous malformation (GVM)
 
 
 
Others
 
 
 
Others
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cutis marmorata telangiectatica congenita (CMTC)
 
 
 
“Acquired” progressive lymphatic anomaly (so called acquired progressive "lymphangioma")
 
 
 
Cerebral cavernous malformation (CCM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Others
 
 
 
Primary lymphedema
 
 
 
Familial intraosseous vascular malformation (VMOS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Telangiectasia
Hereditary hemorrhagic telangiectasia (HHT)
Others
 
 
 
Others
 
 
 
Verrucous venous malformation (formerly verrucous hemangioma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Others
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tables

Anomalies of major named vessels

(also known as "channel type" or "truncal" vascular malformations)

Affect
  lymphatics
  veins
  arteries

Anomalies of

  origin
  course
  number
  length
  diameter (aplasia, hypoplasia, stenosis, ectasia / aneurysm)
  valves
  communication (AVF)
  persistence (of embryonal vessel)
Combined vascular malformations*
CM + VM capillary-venous malformation CVM
CM + LM capillary-lymphatic malformation CLM
CM + AVM capillary-arteriovenous malformation CAVM
LM + VM lymphatic-venous malformation LVM
CM + LM + VM capillary-lymphatic-venous malformation CLVM
CM + LM + AVM capillary-lymphatic-arteriovenous malformation CLAVM
CM + VM + AVM capillary-venous-arteriovenous malformation CVAVM
CM + LM + VM + AVM capillary-lymphatic-venous-arteriovenous m. CLVAVM


Vascular malformations associated with other anomalies
Klippel-Trenaunay syndrome * CM + VM +/-LM + limb overgrowth
Parkes Weber syndrome CM + AVF + limb overgrowth
Servelle-Martorell syndrome limb VM + bone undergrowth
Sturge-Weber syndrome facial + leptomeningeal CM + eye anomalies

+/-bone and/or soft tissue overgrowth

Limb CM + congenital non-progressive limb overgrowth
Maffucci syndrome VM +/-spindle-cell hemangioma + enchondroma
Macrocephaly-CM (M-CM / MCAP) *
Microcephaly-CM (MICCAP)
CLOVES syndrome * LM + VM + CM +/-AVM+ lipomatous overgrowth
Proteus syndrome CM, VM and/or LM + asymmetrical somatic overgrowth
Bannayan-Riley-Ruvalcaba sd lower lip CM + face and neck LM + asymmetry and partial/generalized overgrowth

Vascular Tumors

Benign vascular tumors 1

Infantile hemangioma / Hemangioma of infancy

Pattern
  • focal
  • multifocal
  • segmental
  • indeterminate
Different types
  • superficial
  • deep
  • mixed (superficial + deep)
  • reticular / abortive / minimal growth
  • others
Association with other lesions
PHACE association /

syndrome

Posterior fossa malformations, Hemangioma, Arterial

anomalies, Cardiovascular anomalies, Eye anomalies ,

sternal clefting and ⁄ or supraumbilical raphe

LUMBAR (SACRAL,

PELVIS) association /

syndrome

Lower body hemangioma, Urogenital anomalies,

Ulceration, Myelopathy, Bony deformities, Anorectal

malformations, Arterial anomalies, and Renal anomalies

  • Most common tumor of infancy. Usually appearing after birth, infantile hemangiomas undergo a period of proliferation in few weeks after birth followed by regression and involution in first year of life. Superficial lesions appear as red or “strawberry” colored nodules, papules, or plaques while deeper hemangiomas are typically bluish or skin colored. Mixed tumors, involving both epidermis and deeper structures, may display characteristics of both. They may also be classified as focal, that appear in a specific anatomical area, and segmental that shows varied pattern of growth following developmental growth regions. Segmental type is often associated with other developmental abnormalities.[1][2][3]
  • Rarely, infantile hemangioms can cause life-threatening complications such as congestive cardiac failure, respiratory difficulty and respiratory compromise, and loss of vision. There may also be long-term sequela including permanent disfigurement and scarring. If lesions are multiple, there is an increased risk of visceral involvement. There may be an association with certain syndromes such as PHACE syndrome.[1][4]
  • Some studies have indicated autosomal-dominant and maternal patterns of inheritance. Some studies suggest that environmental factors play the key role. Some risk factors that have been identified in association with infantile hemangioma include female gender, preterm birth, low weight at birth, increasing maternal age ta birth, placenta previa, pre-eclampsia, progesterone use by mother, and Caucasian race.[5][1][6][7]
  • THE diagnosis is made clinically and a thorough investigation should be carried out for visceral hemangiomas and other associative abnormalities if suspicion arises. Majority of these lesions do not require any treatment but treatment is indicated if there is risk for complications such as visual or respiratory involvement. Elective treatment is also offered to prevent disfigurement or scarring. Recently there have been an increased usage of oral beta-blockers such as timolol over systemic glucocorticoids because of higher efficacy. Vincristine and interferon alpha have been used in some high risk hemangiomas but carry the risk of severe complications. Visceral hemangioms may require embolization or surgery if they do not respond to systemic therapy. Laser therapy especially PDL is another modality used in cases of hemangioms unresponsive to medication.[1][8][9][10][11][12][13][14][15]
  • To learn more about infantile hemagioma click here.

Congenital hemangioma

  • Rare tumor that arises in utero and presents as fully developed lesion at birth. Following birth they can regress completely, partially or not at all. So they can be classified as Rapidly involuting (RICH), Non-involuting (NICH), Partially involuting (PICH).[16][17]
    1. Rapidly involuting (RICH)
      • This fast flow tumor can be detected in utero and appears as raised gray single lesions with dilated veins, telangiectasias and a halo at birth. This tumor may be complicated by thrombocytopenia and congestive cardiac failure due to its high-flow nature. Tumor typically regresses spontaneously in 1 to 2 years of life. Sometimes it can occur in liver where it follows the same pattern of involution as that of skin.[17][18]
    2. Non-involuting (NICH)
      • Fast flow tumor that presents as well defined, plaque like lesion with pink to purple color, telangiectasias and pale borders. Typically remains stable but there have been some reports of growth and expansion.[17]
    3. Partially involuting (PICH)
      • These lesions start involution as RICH but become stable over time and persist as NICH.[19]
  • Somatic mutations in GNAQ/GNA11 are thought to cause the congenital hemangioma. GNAQ and its paralogue GNA11 function in intracellular signaling pathways as Gq alpha subunit.[17][20]
  • Diagnosis is usually clinical but imaging techniques such as MRI, CT scan, contrast-enhanced ultrasound and later biopsy can be considered if required. Surgical excision should be considered in case of complications, NICH and PICH.[21][22]

Tufted angioma

  • Benign tumor that is characterized by dense clumps of endothelial cells and capillaries located in dermis. Most lesions appear in adolescence but some can manifest at birth or late in adulthood. Clinical presentation varies but majority of lesions appear as solitary stained area or elevation that later forms red-purple or dusky red plaque while some lesions appear as firm nodules. Lesions are usually solitary, asymptomatic but tender with occasional painful episodes and located on trunk and neck in majority of the cases. Some cases of multi-focal tufted angiomas have also been reported.[23][24][25][26]
  • Tufted angioma can be associated with Kasabach-Merritt phenomenon.[26][16][23]
  • Somatic activating GNA14 c.614A>T (p.Gln205Leu) mutations have been found in some tufted angiomas. These mutations may cause the cell growth to be growth-factor independent by up-regulating the MAPK pathway.[27][28]
  • Imaging such as MRI and ultrasound can add into clinical diagnosis to differentiate tufted angioma from similar lesions such as Kaposi sarcoma, kaposiform hemangioendothelioma and infantile hemangioma. Biopsy and histopathological studies are sometimes required for accurate diagnosis. Surgical excision is the treatment modality but some recommend to only observe the lesions due to its slow growth and possible remission. Other therapies include radiation beam therapy, cryosurgery, corticosteroids and pulsed laser therapy. Vincristine and embolization has been used with success in angiomas associated with Kasabach-Merritt phenomenon.[26][29][30][31][32][33][34]

Spindle-cell hemangioma

  • Rare benign tumor that manifests as solitary or multiple nodules confined to dermis and subcutaneous tissues in almost all of the cases. Histopathologically it appears as solid areas that are cellular and consist of spindle cells seen attached to vessel walls, and cavernous spaces that can be thrombosed. Size may increase over time and patient usually complains of swelling and pain. The nodules or masses can be mobile and elastic or can be firm and immobile.[35][36][37]
  • Somatic mutations in IDH1 and IDH2 have been found to be present in 70% of spindle-cell hemangiomas. IDH1 and IDH2 are important enzymes in cell energy cycles (α-ketoglutarate and NADPH generation).[38][39]
  • Diagnosis often requires biopsy and imaging studies such as MRI to ascertain the extent of the tumor. Local excision is the treatment modality of choice with excellent prognosis in majority of the cases although recurrence is very common.[35][36][37][40][41]

Epithelioid hemangioma

  • Rare benign tumor that typically presents as solitary painful nodule on head and neck. Penis is an atypical location. They can involve skin, bone and soft tissues. Histopathologically these lesions are characterized by presence of endothelial cells that resemble epithelial cells with evidence of proliferation such as large nuclei and prominent nucleoli, and often inflammatory infiltrates. Vessels are typically well-formed. Nuclear atypia is absent.[42][43][44]
  • FOS gene rearrangements such as ZFP36-FOSB fusions are found to be present in one third of epithelioid hemangioma in a study. It encodes a transcription factors that causes over-expression of vascular endothelial growth factor-D (VEGF-D).[45][46][47][48]
  • Diagnosis requires biopsy to determine characteristic histopathological features. Imaging techniques such as MRI can useful. Bone tumors often require surgery for accurate diagnosis. Surgical excision has been used in majority of cases. Other treatment modalities include radiotherapy and embolization. Recently chemoembolization and microwave ablation in combination have been used with success.[42][43][49]

Pyogenic granuloma

  • Also called as lobular capillary hemangioma, this common vascular lesion typically manifests as single, localized nodules on gingiva with sessile base but large lesions often present as lobulated or pediculated . Majority of the lesions are <2 cm in diameter and color of the lesion depending on vascularity varies from pink to purple. It can found anywhere on skin and mucous membranes such as lips, tongues, palate, and on atypical locations such asperiungual or gastrointestinal tract but gingiva is the typical location. Majority of the patients present with profuse bleeding. Others complain of painless mass, swelling, obstructive or interference related symptoms.[50][51][52][53]
  • Trauma or chronic irritation have been cited as the most common causes but it can arise due to multiple other factors such as medications, viral infections such as herpes virus type 1, Orf virus and/or human papilloma virus type 2, and BRAF mutations or use of BRAF inhibitors that can cause multiple, disseminated lesions. Medications that have been implicated in development of this lesion include oral contraceptives, retinoids, gefitinib, cabecitabine, and afatinib, BRAF inhibitors such as vemurafenib or encorafenib, and rituximab. Mutations in BRAF/RAS/GNA14 have all been associated with pyogenic granuloma, BRAF c.1799T>A has been recently described as one of the major mutations associated.[51][52][53][54][55][56][57]
  • The diagnosis is made by clinical features and then confirmed by histopatholgical features. Current standard of care is surgical excision. Other treatment modalities include curettage, electrocautery, radiosurgery, cryosurgery, sclerotherapy, or laser treatment. Topical or oral beta-blockers timolol or propranolol and topical imiquimod have also been successful.[51][52][58][59][60][61]

Hobnail hemangioma

  • Benign tumor that typically presents as solitary growth with often, but not always, tagetoid appearance of a central papule and peripheral brown ring that may or may not disappear over time. Characteristic histopathological feature include plump endothelial cells that line ectatic and irregular vessels, and project into lumina like hobnails. Deeper dermis shows vessels dissecting collagen fibers. Majority of the lesions are fund on trunk and extremities with head and neck, and oral cavity as uncommon locations. Patient may present with pain, or an asymptomatic growing lesion.[62][63][64]

Locally aggressive or borderline vascular tumors

Kaposiform hemangioendothelioma

  • Locally Aggressive tumor that originates on skin and occurs primarily in childhood.[65] It is characterized by a single or multiple masses with following characteristics:
    • Deep reddish-purple color
    • Shiny, firm texture
    • Warm to the touch
    • Swollen and painful
  • May be complicated by Kasabach-Merritt phenomenon (KMP), characterized by consumption coagulopathy, thrombocytopenia, and hemolytic anemia.[66] Typical features also include low fibrinogen and elevated D-dimers.
  • Somatic activating GNA14 c.614A>T (p.Gln205Leu) mutations have been found in some KHE.[27]
  • Invasion of bone, retroperitoneum, and mediastinum has occured in some cases but no case of metastasis has been reported yet. [66]
  • Diagnostic work up may include blood tests, biopsy, contrast enhanced ultrasound and MRI or CT scan imaging.
  • Treatment Options include steroid, vincristine, interferon alpha, anti-platelet agents, sirolimus-containing therapies and surgery.[67]

Retiform hemangioendothelioma

  • First described in 1994 as a form of low grade angiosarcoma, Retiform hemangioendothelioma commonly presents as a slow growing asymptomatic solitary nodule or plaque on distal extremities in 2nd-4th decade of life.[68]
  • Must be differentiated from Angiosarcoma.
  • High level of local recurrence but very low potential for metastasis.
  • Diagnostic work up includes histopathological studies, that shows arborizing blood vessels are arranged in retiform pattern [68], and MRI.
  • Surgery is the treatment of choice, though 2/3rd cases recur. Adjuvant radiotherapy and ddjuvant chemotherapy with recombinant interferon alpha and low dose cisplatin have also been reported in selected cases. [68]

Papillary intralymphatic angioendothelioma (PILA), Dabska tumor

  • First described in 1969 by Dabska,this rare vascular neoplasm generally occurs in soft tissues but can also occur in bone. They usually appear as painless inflammatory irregular or nodular lesions below the skin surface.
  • The distinctive feature on histopathology is the intravascular growth of well-differentiated endothelial cells presenting as a matchstick columnar configuration.[69]
  • They are locally aggressive but rarely metastasize. Locally recurrence after surgery is very common.
  • Diagnostic studies may include histopathological studies, fine needle aspiration, MRI and Ct scan.[70]
  • Wide local excision is the treatment of choice. However any combination of steroids, chemotherapy, radiation therapy, and invasive procedures can be used to treat this tumor.[71]

Composite hemangioendothelioma

  • A rare vascular neoplasms, characterized by an admixture of benign, low-grade malignant, and malignant vascular components, the ratio of each component can vary. They can occur in any age group.[72]
  • They occur predominantly as long-standing lesions in the dermis and subcutis of the extremities, but can also occur at other sites, including the oral cavity and in viscera such as kidney and spleen.[73]
  • It may recur locally and has the potential to metastasize. Recurrence was found to be in 8/10 cases in some studies. [74]
  • Diagnostic work up must include biopsy because of heterogeneity of lesions and it must be differentiated from other vascular tumors.[72]
  • Surgical excision is the treatment of choice although some patients have been treated with interferon and electron beams.[72]

Pseudomyogenic hemangioendothelioma

  • A locally aggressive tumor with endothelial differentiation that usually presents as multiple asymptomatic discontinuous lesions, often at extremities.[75][76]
  • SERPINE1-FOSB fusions are characteristic that result in over-expression of truncated form of FOSB.[75] FBJ murine osteosarcoma viral oncogene homolog B, also known as Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B, FOSB or FosB, is a protein that, in humans have been implicated as regulators of cell proliferation, differentiation, and transformation.[77]
  • It may mimic epithelioid sarcoma on histology but metastasis is very rare and prognosis is excellent.[76]
  • Diagnostic work up includes X-ray, MRI, CT scan and biopsy of the lesion.
  • Excision is the typical treatment but chemotherapeutic agents including gemcitabine/taxane and mammalian target of rapamycin inhibitor [78], mTOR inhibitors such as sirolimus [79], VEGFR1-4/PDGFRA inhibitors such as telatinib [75] have been used with success in various studies.

Polymorphous hemangioendothelioma

  • A rare vascular neoplasm, Polymorphous hemangioendothelioma occurs in lymph nodes, but a few cases have been found in extra-nodal sites such as the mediastinum, spinal cord, and liver. It is a very rare cause of persistent lymphadenopathy. The data on natural history and clinical presentation is limited due to very few number of cases reported. [80]
  • Characterized by a polymorphous blend of solid, primitive vascular and angiomatous areas in varied proportions on microscopic examination.[80]
  • Diagnotic work up includes histopathological examination, MRI and Ct scan.
  • Wide local excision[81] has been used for treatment, with radiation therapy in case of recurrence.[82]

Kaposi sarcoma

  • An AIDS-associated vascular malignancy that usually presents as mucocutaneous lesions [83] but can also occur in viscera such as lungs. It can remain confined to skin but widespread visceral involvement may occur.
  • There are three known variants
    • One variant occurs spontaneously in Jewish and Italian males in Europe and the United States.
    • Another more aggressive variant is endemic in young children is endemic in Africa.
    • A third form occurs in about 0.04% of kidney transplant patients. There is also a high incidence in AIDS patients.[84] HHV-8 is the suspected cause.[85]
  • To learn more about KS, click here.

Malignant vascular tumors

Angiosarcoma

  • Angiosarcoma(AS) is malignancy that presents with a very heterogeneous distribution in the human body with aggressive clinical course, and may appear in multiple locations, from breast to liver or skin.[86]
  • Associated with MYC gene amplification and protein overexpression.[87] Myc is a family of regulator genes and proto-oncogenes that code for transcription factors.
  • Complete surgical excision and radiotherapy are the main treatments, with a minor role of chemotherapy.[88]
  • To learn more about angiosarcoma click here.

Epithelioid hemangioendothelioma

  • A rare vascular tumor, described for the first time in 1975 by Dail and Liebow,that usually affects lung, liver and bones, although may occur many other sites in body including head and neck, breasts and lymph nodes.[89]
  • Usually Asymptomatic but patient may present with respiratory symptoms, bone pains or other symptoms depending on the site of the tumor.
  • Majority are characterized by a reciprocal t(1;3)(p36;q25) translocation. The t(1;3) results in fusion of a gene known as WWTR1 (or TAZ) to CAMTA1. These genes code for transcription factors.[90][91]
  • Imaging is crucial in forming both diagnosis and management plan. Recognition of the expression of vascular markers (Fli-1 and CD31 are endothelial-specific markers), and the microscopic evidence of vascular differentiation is of primary importance as well.[89]
  • Surgery has been used as primary treatment modality depending upon the location of the tumor, with radiotherapy being used in some cases.

Vascular malformations

Simple vascular malformations

Capillary malformations (CM)

Nevus simplex
  • Also called "salmon patch" , “angel kiss”, “stork bite”, this common anomaly presents as single or multiple blanchable, pink-red patches with poorly defined borders in newborn infants. It may affect up to 60% of new born infants.[92]
  • Typically are found at the nape of the neck , on the forehead between the eyebrows or on the eyelids. Although asymptomatic, they often become more noticeable during crying or temperature changes.
  • Fades within one to two years, though some lesions can persist on the back of the neck.[93] No treatment is needed except when asked by the patient.
  • Imaging studies are recommended to evaluate for underlying spinal dysraphism if lumbosacral nevus simplex is present with another lumbosacral abnormality such as dermal sinus or pit, lipoma, patch of hypertrichosis, or deviated gluteal cleft.[92]
Cutaneous and/or mucosal CM (“port-wine” stain)
  • "A vascular malformation of developmental origin characterized pathologically by ectasia of superficial dermal capillaries, and clinically by persistent macular erythema." They occur on face for majority of times and may vary from pale pink to deep red or purple, ranging from few millimeters to centimeters in diameter.[94] Lesions are usually flat, are not painful and do not regress spontaneously.
  • Can be classified as follows:
    • Nonsyndromic CM
    • CM with CNS and/or ocular anomalies (Sturge-Weber syndrome)
    • CM with bone and/or soft tissues overgrowth
    • Diffuse CM with overgrowth (DCMO)
  • Usually occur as sporadic isolated lesions, following the embryonic vasculature of the face.[95] Majority of lesions are caused by somatic mutations in GNAQ (Guanine nucleotide-binding protein G(q) subunit alpha) and its paralogue GNA 11. Somatic activating mutation in GNAQ c.548G>A, p.Arg183Gln has been demonstrated in majority of lesions. A novel GNAQ, c.547C>G, p.Arg183Gly variant has also been found to be associated with some lesions.[95]
  • May be associated with other abnormalities including glaucoma, and soft tissue and bone overgrowth and with various syndromes including Sturge-Weber syndrome, Klippel-Trenaunay syndrome, Parkes-Weber syndrome, Servelle-Martorell syndrome, Proteus syndrome, CLOVES syndrome, Bannayan-Riley-Ruvalcaba syndrome, Capillary malformation-arteriovenous malformation syndrome, Macrocephaly-capillary malformation syndrome, Microcephaly-capillary malformation syndrome, Beckwith-Wiedemann syndrome.
  • Diagnosis is mainly clinical depending upon history and examination. New born screening for other congenital and genetic anomalies may be indicated including urgent ophthalmology review and a brain MRI.[96]
  • The pulsed dye laser (PDL) treatment is considered to be the gold standard. Surgery is considered when PWS is associated with bone and soft tissues overgrowth.[97]
  • To learn more about PWS click here.
Reticulate CM
  • Cutaneous capillary malformations which are reticulated, widespread on body ranging from few to hundreds of oval/circular macules or patches varying in size from few mm to several cm. These anomalies are found in two syndromes:
    • CM of MIC-CAP (microcephaly-capillary malformation)
    • CM of MCAP (megalencephaly-capillary malformation-polymicrogyria)
CM of CM-AVM
  • Usually multiple, these malformations can be round to oval, can vary from pink-red to tan,and are found in patches of 1 to 2 cm in size. These patches are scattered throughout the body and new ones may continue to appear throughout childhood. Sometimes a high flow murmur can be heard using Doppler device.[98]
  • These are found in Capillary malformation-arteriovenous malformation syndrome, an autosomal dominant syndrome associated with mutations in RASA1.[99]
Cutis marmorata telangiectatica congenita (CMTC)
  • A congenital, vascular malformation consisting of capillary and venous sized vessels. Presentation is similar to physiologic cutis marmorata with a fixed reticulate erythema but unlike physiologic cutis marmorata, the erythema does not resolve with warming and may be associated with skin ulceration, atrophy of the skin, and undergrowth of the involved extremity. [100] [101]
  • Findings may include prominent veins, telangiectasias, cutaneous atrophy, ulceration, and hyperkeratosis. May have localized or generalized appearance. In localized pattern, the lesions are confined to one side of the body, not crossing midline with or without sharp demarcation. [102]
  • May be associated with a number of other abnormalities, of which limb asymmetry is the most common. Others may include glaucoma, port wine stains, angiokeratomas, hemangiomas. It may also be associated with Sturge-Weber syndrome.[103] Most cases tend be sporadic but autosomal recessive pattern has been observed in familial cases.[104]
  • Diagnosis is clinical and depends on history and examination. Management depends on the systemic involvement. Skin lesions tend to improve spontaneously.[105][106]
Telangiectasia
  • "Permanent dilation of preexisting blood vessels creating small focal red lesions, most commonly in the skin or mucous membranes. It is characterized by the prominence of skin blood vessels, such as vascular spiders."[107] To learn about Hereditary hemorrhagic telangiectasia (HHT) click here.

Lymphatic malformations (LM)

Common (cystic) LM
  • benign lesions consisting of dilated lymphatic channels or cysts lined by cells of endothelial origin with lymphatic differentiation.[108] If these lesions are associated with overgrowth then some of these lesions belong to the PIK3CA-related overgrowth spectrum. [109]
  • These are classified as follows:
    • Macrocystic LM
    • Microcystic LM
    • Mixed cystic LM
    1. Macrocystic LM
      • Also called cystic hygroma, and cystic lymphangioma. A cystic growth consisting of large, interconnected lymphatic cysts lined by a thin endothelium. Usually found in neck, axilla and groin. Presents as a large, poorly delineated, translucent, soft cystic mass covered by normal skin.
      • May be associated with chromosomal abnormalities such as Down syndrome, Turner syndrome. To learn more click here.
    2. Microcystic LM
      • Also known as 'lymphangioma circumscriptum', these lymphatic anomalies may be present at birth or may develop in first few years of life. Usual presentation is as a cluster of clear, translucent or hemorrhagic vesicles that may cause pressure symptoms as they grow in size.
      • Usually affect deep seated structures and frequent locations are proximal extremities, trunk, axilla, and the oral cavity.
      • Diagnosis is clinical and treatment options include surgery, sclerotherapy, radiotherapy, and laser therapy. Recently topical sirolimus has also been used.[110] To learn more click here.
Generalized lymphatic anomaly (GLA)
  • Diffuse or multicentric proliferation of dilated lymphatic vessels that may involve skin, bones, and internal organs. The proliferating vessels resemble common lymphatic malformations but the disease involvement is multi-system.[111][112] Lungs, bones and mediastinum are most commonly affected but skin, liver and spleen are commonly affected as well. Liver, spleen, and thoracic duct involvement typically indicates worse prognosis.[113]
  • Considered to b sporadic and non-hereditary, it may present in childhood or can be diagnosed later in life.[114][115] Etiology is unknown but high levels of VEGFR-3 have been reported in patient population.
  • Chylothorax due to leakage of lymphtic fluid is commonly encountered and is difficult to treat.[116] Patient may present with respiratory symptoms such as chest pain, wheezing, SOB, cough, repeated infections or symptoms due to involvement of other organs such as bone pain, pathological fractures, pelvic or abdominal pain, swelling, fever, internal bleeding, skin lesions.[111][117][118][115]
  • Diagnosis of GLA is very challenging and requires multidisciplinary input. It depends on history, examination, imaging studies such as MRI, contrast ultrasound, magnetic resonance lymphangiogram, CXR,near-infrared fluorescence lymphatic imaging, nanotechnology-based MRI agents and biopsy.[111][119][120] Sometimes surgery is required that can be both diagnostic and therapeutic.[111]
  • Management is usually focused on symptomatic improvement. Options include chest drainage, open thorax surgery, sclerotherapy, surgical removal (debulking), lymphatic anastomosis and medical therapies such as sirolimus and interferon.[111]
    1. Kaposiform lymphangiomatosis (KLA)
      • A rare subtype with worse pronosis.[121] Malformed vessels occur with cluster and sheets of spindle lymphatic endothelial cells.[122] Consumptive coagulopathy is also a feature.[123]
      • Intra-thoracic component is often the cause of mortality.[122] Currently there are no treatment guidelines.[121]
LM in Gorham-Stout disease
  • Lymphatic malformation in Gorham-Stout disease affect a single or multiple bones and adjacent soft tissues, leading to progressive osteolysis and invasion of the bone cortex.[124][125][126] Was originally described as disappearing or vanishing bone disease. GSD progression often leads to visceral, abdominal and thoracic involvement that may cause effusion and ascites[126] The osteolysis is progressive in GSD as compared to non-progressive osteolysis in GLA.[126]
  • There are two distinct forms of GSD. Primary form involves multiple bones and tissues with multi-focal lesions as described above versus trauma induced GSD that typically involves one or closely adjacent one and is usually self limited.[127]
  • The etiology has not been established and gender, genetic inheritance, or race seem to play no role but inflammation, trauma and puberty have been thought to pay a role. Activation of platelet derived growth factor pathway and up regulation of lymphangiogenesis stimulating pathways may play a role in pathogenesis.[128][129][130] IL-6 has been found to be elevated in some patients.[131]
  • Symptoms depend on the bone involved and extent of involvement. Patient can experience chest pain, dyspnea, tachypnea, wheezing, SOB, dull ache, back pain, paralysis, loose teeth and facial deformation.[132][133] The involvement of thorax and development of chylothorax indicate poor prognosis.[133]
  • Diagnosis often requires clinical, radiological and histopathological evidence. Imaging studies including MRI and CT scan are often crucial. Management is often symptomatic and encompasses anti-osteoclastic medication and radiotherapy.[133][134] If disease affects neuro-vascular structures then surgery is indicated.[135][136]
“Acquired” progressive lymphatic anomaly
  • Also called acquired progressive lymphangioma, this vascular anomaly usually presents as asymptomatic, slow growing, reddish brown or violaceous papule, plaque, macule or erythema. Histological studies show numerous, dilated, thin-walled vessels that are lined by flat endothelial cells and are proliferating. No nuclear atypia has been demonstrated in this locally aggressive tumor. The cells appear to dissect between the collagen fibers.[137][138][139][140]
  • Excision is usually the treatment of choice but some other therapies such as Imiquimod 5% cream have been tried.[141][142]
Primary lymphedema
  • Edema due to obstruction or disorder of lymphatic vessels and lymph nodes. Can present at any stage of life but majority of he cases present at puberty.[143]
  • Treatment is usually conservative by compression therapy that may include complex physical therapy, pneumatic pumps and compressive garments. Some cases may require volume reducing surgery. Lymphatic microsurgery is being tried in some experimental studies.[143]
    1. Nonne-Milroy syndrome
      • A hereditary disorder that usually presents as bilateral edema of lower limbs that may involve the whole extremity or may be limited to legs, feet or toes. This may or may not be accompanied by toenail changes such as upslanting toenails and deep creases in the toes, papillomatosis, hydrocele, hydrothorax, lung hypoplasia and prominent leg veins. A case of unilateral phenotype have also been reported. Swellings may be complicated by recurrent episodes of cellulitis.[144][145][146][147]
      • The disease typically follows autosomal-dominant pattern though cases of autosomal-recessive inheritance and variable expression has also been reported. The defect thought to be responsible has been located on VEGFR3 (FLT4) gene that codes for vascular endothelial growth factor receptor 3 (VEGFR3).[146][147][145]
    2. Primary hereditary lymphedema
      • Chronic edema that can appear in any body part due to blockage or malfunctioning of lymphatic channels that may lead to recurrent infections and impairment.[148][149]
      • Results from mutations in VEGFC gene that encodes the ligand for the vascular endothelial growth factor receptor 3 (VEGFR3/FLT4). This gene plays an important role in lymphangiogenesis.[149][148]
    3. Primary hereditary lymphedema
      • Edema typically first appears in legs and then progresses to involve the arms.[150]
      • Thought to be associated with muatation in GJC2 gene that encodes for connexin-47, a member of the gap junction connecxin family. Mutation in this gene has also been linked to Pelizaeus-Merzbacher-like disease type 1 and spastic paraplegia type 44.[150][151]
    4. Lymphedema-distichiasis
      • A syndrome that is characterized by edema that typically manifests in lower limb and distichiasis that is an anomaly of eyelashes. Distichiasis appears earlier in life than lymphedema and manifests as extra eyelashes that typically arise from meibomian glands. This syndrome has been associated with congenital heart disease, varicose veins, cleft palate, ptosis, strabismus, renal abnormalities, spinal extradural cysts, and neck webbing.[152][153][154][155][156][157]
      • Inherited in autosomal dominant pattern mutation in FOXC2 gene that encodes for transcription factors. Inheritance also shows variable expression.[158][159][156]
      • Diagnosis is clinical. Treatment for lymphedema is mainly conservative with management of complications such as cellulitis. Treatment for distichiasis consists of symptomatic management such as lubrication or definitive management such as surgery, cryotherapy, or electrolysis.[152][160]
    5. Hypotrichosis-lymphedema-telangiectasia
      • Characterized by less than normal body hair (hypotrichosis), chronic swelling of the body (lymphedema), and dilated blood vessels (telangiectasia). These usually appear at birth or early in life and then progressively worsen over time. Hypotrichosis may present as absent eyebrows, eyelashes and alopecia or may manifest as sparse body hair. Lymphedema typically has predilection for lower limbs and telangiectasia are more commonly seen on palms although plantar telangiectasia are also seen. This syndrome has also been associated with cutis marmorata, hydrocele, palpebral edema, ascites, dermal atrophy, small cutaneous papular vascular lesions, skin degeneration, hydrops fetalis, pleural effusion, renal defects, aortic dilation and abnormal nails.[161][162][163][164]
      • Mutation in SOX18 gene that encodes for transcription factor SOX18 is thought to be the cause of this syndrome. This transcription factor is expressed widely in body tissues and that may explain the wide ranging manifestations of this syndrome. Inheritance can both be autosomal-dominant and autosomal-recessive.[165][166][167][168][169][170][171]
      • There is no definitive treatment for this syndrome. Management is based on genetic counseling and symptomatic treatment.[172][173]
    6. Primary lymphedema with myelodysplasia
      • Also called Emberger syndrome, this anomaly presents with wide variety of phenotypes including congenital sensorineural deafness, lymphedema, myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), hypotelorism, epicanthic folds, long tapering fingers and/or neck webbing, and generalized warts.. Lymphedema has predisposition for lower limbs. Patient may present with complication of these phenotypes such as infections, bleeding and recurrent cellulitis.[174][175][176][177]
      • Deficiency of transcription factor GATA2 due to mutations in GATA2 gene is thought to play the critical role. Inheritance tends to follow autosomal-dominant pattern.[174][175][176][178][179][177]
      • Screening for GATA2 muations is indicated in patients who present with lymphedema and hematological abnormalities. Children should be screened for hematological disorders if they present with lower limb lymphedema. Besides symptomatic treatment for lymphedema and standard treatment for deafness, primary stem cell transplant is indicated for hematological malignancies. [176][174][180][181]
    7. Primary generalized lymphatic anomaly
      • Also called Hennekam lymphangiectasia-lymphedema syndrome, this disorder is characterized by generalized lymphatic anomalies such as lymphangiectasia and lymphedema, typical dysmorphic features such as flat nasal bridge, hypertelorism, small mouth and variable intellectual disability that may present as developmental delay. Lymphangiectasias are typically found in intestines and can cause generalized body swelling due to loss of proteins but can also be found in other organs such as kidney, thyroid gland and pleura.[182][183][184]
      • Mutations in CCBE1 gene are thought to be the main culprit although mutations in FAT4 gene has also be linked by some studies. CCBE1 encodes for Collagen- and calcium-binding EGF domain-containing protein 1 (CCBE1) that plays a crucial role in activation of vascular endothelial growth factor-C (VEGFC) through its collagen domain. Inheritance tends to follow autosomal-recessive pattern.[185][182][184][186]
      • Diagnosis depends on history and examination, lab findings, and genetic testing for associated mutations. Analysis for CCBE1 mutation should be considered in patients presenting with unexplained lymphatic anomalies, and/or unexplained intellectual disability. No definitive management is available at this point. Conservative measures for lymphedema and protein deficiency, and rehabilitation for intellectual disability is the mainstay of management.[187][182][184][187]
    8. Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation syndrome
      • As name indicates, this syndrome is characterized by microcephaly that is often accompanied by intellectual disability, congenital lymphedema and ocular findings. Ocular defects, often because of chorioretinal dysplasia, may include peripheral retinal pigmentation, retinal folds, chorioretinopathy, widespread chorioretinal atrophy, hyperopia, small corneas, nystagmus and small optic nerves. Microcephaly can be variable and imaging often shows small size brain. Intellectual disability can also vary from normal developmental to severe mental retardation. Lymphedema most often involves lower limbs and may or may not resolve spontaneously. Facial features are distinct with broad nose, anteverted nares, upslanting palpebral fissures, a rounded nasal tip, a long philtrum, a pointed chin, a thin upper lip, prominent ears, and patient may also have atrial septal defects.[188][189][190][191][192]
      • Mutations in KIF11 gene that encodes for spindle motor protein of kinesin family, a protein that plays a role in mitosis, are thought to cause this syndrome. These mutations can be sporadic or hereditary, and when hereditary they follow autosomal-dominant pattern with variable expression and reduced penetrance.[188][193][194][195][196]
      • Diagnosis requires genetic testing in addition to clinical findings. Long term cardiac and ophthalmologic follow-ups are recommended.[191][196]
    9. Lymphedema-choanal atresia
      • A very rare syndrome described in 1982 in a Middle Eastern family when individuals in the family presented with bilateral posterior choanal atresia with other developmental abnormalities such as high arched palate, hypoplastic nipples, pericardial effusion, and pectus excavatum. Follow up detected lymphedema in five individuals with choanal atresia in the family later in 1991.[197]
      • Deletion in PTPN14 gene that appeared to follow autosomal-recessive pattern are thought to be the cause. This gene encodes for a protein that is thought to be involved in cell-signaling pathways and regulation of cellular functions.[197]

Venous malformations (VM)

Common VM
  • Localized defects characterized by dilated venous channels. Microscopically they consist of thin endothelial cells lined by fewer, disorganized smooth muscle cells and extracellular matrix. Patient may present with deforming lesions, bleeding, thrombosis, significant acute or chronic pain, and pressure symptoms. Located on skin and mucosa for majority of the times, lesions often are present at birth.[198][199][200]
  • Sporadic mutations in the TEK gene, that encodes the tyrosine kinase receptor TIE2 that functions to regulate cellular growth and proliferation are found in half of the patients with sporadic venous malformations.[198][199][200]
  • Diagnosis is clinical. Current treatment options include sclerotherapy and surgery, alone or in combination but inaccessible lesions and high recurrence rate remains a problem. mTOR inhibitor rapamycin has been used in some studies with success.[199]
Familial VM cutaneo-mucosal (VMCM)
  • Venous malformations that appear both on skin and mucous membranes. Present at birth, they may not be apparent early in life and can appear after trauma and during pregnancy and puberty because of rapid growth. Patient may present with sequela of these malformations such as cosmetic deformation, pain, bleeding.[201]
  • Associated with mutation in TEK/TIE2 receptor tyrosine kinase that plays critical role in development of vessels and cardiovascular system.[201][202]
Blue rubber bleb nevus (Bean) syndrome VM
  • Also called Bean's syndrome and diffuse angiomatosis, venous malformations in this disorder involve the skin, oral cavity and internal organs, most typically the gastrointestinal tract. Cutaneous malformations are bluish in color, generally smaller than 1-2 cm, often hyperkeratotic, compressible and often found at palms and soles. Anomalies on the skin are usually asymptomatic but GI malformations can cause hemorrhage that can lead to anemia, most frequent presentation in patient population. Other manifestation can include GI infarction, telescoping or twisting of GI tract leading to intussusception and volvulus.[203][204][205]
  • Thought to be caused by somatic double (cis) muatations in TEK gene although autosomal-dominant inheritance has also been described in some cases. The gene that encodes TIE2, receptor tyrosine kinase involved in cell-signaling.[206][205][207][204]
  • The documentation of gastrointestinal lesions by endoscopy, colonoscopy, CT scan or MRI is considered pathognomonic. Sclerotherapy and surgery such as enterotomy remain the mainstay of treatment along with symptomatic management such as long term iron supplementation and/or blood transfusions.[204][203][208]
Glomuvenous malformation (GVM)
  • Defined by presence of glomus cells in in smooth muscle layer of the vessels, these mesynchymal vascular anomaly arises from glomus bodies, arteriovenous anastomosis that help regulate temperature via shunting of blood through its unique neuromyoarterial structure. Classically found in digits, they can occur anywhere but widespread lesions are not common. Clinical presentation varies from asymptomatic bluish to reddish plaques and nodules that are often partially compressible and are tender to painful disfiguring lesions.[209][210][211][212]
  • Mutations in glomulin (GLMN) gene that leads to defective GLMN protein is thought to be the cause. GMLN protein binds Rbx1 and inhibits its E3 ubiquitin ligase activity. If GMLN is defective then it leads to increased activity of Rbx1 causing decreased levels of Fbw7 and thus increased levels of Cyclin E and c-Myc because Fbw7 facilitates the ubiquitination and degradation Cyclin E and c-Myc.Mutations are inherited in autosomal-dominant pattern with incomplete pattern and variable expression although sporadic cases have been reported.[213][214][215][216]
  • Imaging such as MRI and CT scan and ultrasound can localize and define the extent of disease but definitive diagnosis requires biopsy following by histopathological studies demonstrating proliferation of glomus cells and venous malformations. Current treatment modalities include surgical excision and sclerotherapy although recurrence is common. Recently electron beam radiation and Nd:YAG laser have been used with success.[209][210][211][217][218][219][220]
Cerebral cavernous malformation (CCM)
  • Characterized by clusters of malformed endothelial channels forming densely arranged sinusoids that possess little to no intervening brain tissues. Because they lack smooth muscles and connective tissue and are malformed, they are prone to leakage causing micro-hemorrhages and thrombosis leading to hemosiderin deposits and gliosis around them. They can remain asymptomatic throughout life making them incidental finding but can cause symptoms associated with hemorrhage and pressure effects such as headaches, seizures, stroke, and focal neurologic deficits.[221][222][223]
  • Mutations in CCM1 Krev interaction trapped protein 1 (KRIT1), CCM2 Malcavernin, and CCM3 Programmed cell death protein 10 (PDCD10) are thought to be the cause of familial cases that tend to be inherited in autosomal-dominant pattern with incomplete penetrance, and variable expression. These proteins interact with cytoskeleton and endothelial tight junctions during vascular development in neural tissues to help maintain endothelial barrier function. they can occur due to sporadic mutations, usually presenting as single cavernous malformation while familial cases typically present as multiple cavernous malformations.[221][222][224][225]
  • Magnetic resonance (MR) imaging techniques are diagnostic modality of choice. Current treatment options depend on clinical history and location of the malformations. Surgery is usually preferred for symptomatic lesions in easily accessible locations and by some, for refractory epilepsy. If asymptomatic, observation is recommended but in case of single accessible asymptomatic malformation, surgical resection can be done. Surgery is also not recommended for malformations located in brain-stem due to significant mortality and morbidity associated with surgery while some recommend surgery after a second symptomatic bleed. Guidelines for symptomatic lesions located deep vary. Radiosurgery can be an alternative modality for single, symptomatic lesion if risks associated with surgery are unacceptable.[222][226][227][228][229]
Familial intraosseous vascular malformation (VMOS)
  • Described as enlargement and expansion of malformed blood vessels that is severe and progressive, typically in skull, face, and vertebral column. Another typical finding is mid-line abnormalities such as diastasis recti, supraumbilical raphe, and hiatus hernia. Clinical presentation can vary but increasing intracranial pressure and hemorrhage after any surgical procedure such as extraction of tooth are of major concern. Other common findings include pain, enlarging tissues such as expanding jaw, bluish mass/swelling, loose tooth, spontaneous bleeding, and ulceration.[230][231][232]
  • Mutations in ELMO2 gene encoding engulfment and cell motility protein 2 (ELMO2) are thought to be the cause of these malformations. This protein s involved cell-signaling cascade through its attachment to cell membrane. Majority of the cases are sporadic but recently some familial cases with autosomal-recessive inheritance have been described.[230][233]
  • CT angiography and magnetic resonance techniques are the preferred diagnostic modalities and may show widening of neurovascular canal on CTA, hyperintense signal on MRI. Honeycomb and sunburst radiographic appearances have been described as well. Management options include embolization, sclerotherapy, and surgical extirpation.[230][232][234]
Verrucous venous malformation
  • Formerly verrucous hemangioma, this rare congenital malformation is characterized by dilated blood vessels reaching out from papillary layer of dermis into subcutaneous tissue. Earlier presentation is bluish lesion that develops warty surface later on. Painful enlarging mass is the typical complain in symptomatic patients.[235][236]
  • Somatic mutation in MAP3K3 mitogen-activated protein kinase kinase kinase 3 are thought to be the cause.[237]
  • MRI is the diagnostic modality of choice but histopathological confirmation is gold standard for accurate diagnosis because of its close resemblance with angiokeratoma. Superficial ablation, surgical excision are treatment choices. Recently sirolimus has been used in some studies.[235][236][238]

Medical Therapy

Naural History

Historical Perspective

References

  1. 1.0 1.1 1.2 1.3 Smith C, Friedlander SF, Guma M, Kavanaugh A, Chambers CD (July 2017). "Infantile Hemangiomas: An Updated Review on Risk Factors, Pathogenesis, and Treatment". Birth Defects Res. 109 (11): 809–815. doi:10.1002/bdr2.1023. PMC 5839165. PMID 28402073. Vancouver style error: initials (help)
  2. Chiller KG, Passaro D, Frieden IJ (December 2002). "Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex". Arch Dermatol. 138 (12): 1567–76. PMID 12472344.
  3. Greenberger S, Bischoff J (September 2011). "Infantile hemangioma-mechanism(s) of drug action on a vascular tumor". Cold Spring Harb Perspect Med. 1 (1): a006460. doi:10.1101/cshperspect.a006460. PMC 3234458. PMID 22229118.
  4. Rotter A, Samorano LP, Rivitti-Machado MC, Oliveira Z, Gontijo B (June 2018). "PHACE syndrome: clinical manifestations, diagnostic criteria, and management". An Bras Dermatol. 93 (3): 405–411. doi:10.1590/abd1806-4841.20187693. PMC 6001075. PMID 29924216. Vancouver style error: initials (help)
  5. Castrén E, Salminen P, Vikkula M, Pitkäranta A, Klockars T (November 2016). "Inheritance Patterns of Infantile Hemangioma". Pediatrics. 138 (5). doi:10.1542/peds.2016-1623. PMID 27940781.
  6. Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, Newell B, Nopper AJ, Frieden IJ (March 2007). "Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics". J. Pediatr. 150 (3): 291–4. doi:10.1016/j.jpeds.2006.12.003. PMID 17307549.
  7. Drolet BA, Swanson EA, Frieden IJ (November 2008). "Infantile hemangiomas: an emerging health issue linked to an increased rate of low birth weight infants". J. Pediatr. 153 (5): 712–5, 715.e1. doi:10.1016/j.jpeds.2008.05.043. PMID 18940356.
  8. Darrow DH, Greene AK, Mancini AJ, Nopper AJ (October 2015). "Diagnosis and Management of Infantile Hemangioma: Executive Summary". Pediatrics. 136 (4): 786–91. doi:10.1542/peds.2015-2482. PMID 26416928.
  9. Ceisler EJ, Santos L, Blei F (2004). "Periocular hemangiomas: what every physician should know". Pediatr Dermatol. 21 (1): 1–9. PMID 14871317.
  10. Tal R, Dotan M, Lorber A (June 2016). "Approach to haemangiomatosis causing congestive heart failure". Acta Paediatr. 105 (6): 600–4. doi:10.1111/apa.13359. PMID 26859502.
  11. Hogeling M, Adams S, Wargon O (August 2011). "A randomized controlled trial of propranolol for infantile hemangiomas". Pediatrics. 128 (2): e259–66. doi:10.1542/peds.2010-0029. PMID 21788220.
  12. Bennett ML, Fleischer AB, Chamlin SL, Frieden IJ (September 2001). "Oral corticosteroid use is effective for cutaneous hemangiomas: an evidence-based evaluation". Arch Dermatol. 137 (9): 1208–13. PMID 11559219.
  13. Perez J, Pardo J, Gomez C (2002). "Vincristine--an effective treatment of corticoid-resistant life-threatening infantile hemangiomas". Acta Oncol. 41 (2): 197–9. PMID 12102167.
  14. Schiestl C, Neuhaus K, Zoller S, Subotic U, Forster-Kuebler I, Michels R, Balmer C, Weibel L (April 2011). "Efficacy and safety of propranolol as first-line treatment for infantile hemangiomas". Eur. J. Pediatr. 170 (4): 493–501. doi:10.1007/s00431-010-1324-2. PMID 20936416.
  15. Chinnadurai S, Sathe NA, Surawicz T (March 2016). "Laser treatment of infantile hemangioma: A systematic review". Lasers Surg Med. 48 (3): 221–33. doi:10.1002/lsm.22455. PMID 26711436.
  16. 16.0 16.1 "www.issva.org" (PDF).
  17. 17.0 17.1 17.2 17.3 Ayturk UM, Couto JA, Hann S, Mulliken JB, Williams KL, Huang AY, Fishman SJ, Boyd TK, Kozakewich HP, Bischoff J, Greene AK, Warman ML (April 2016). "Somatic Activating Mutations in GNAQ and GNA11 Are Associated with Congenital Hemangioma". Am. J. Hum. Genet. 98 (4): 789–95. doi:10.1016/j.ajhg.2016.03.009. PMC 4833432. PMID 27058448.
  18. Berenguer B, Mulliken JB, Enjolras O, Boon LM, Wassef M, Josset P, Burrows PE, Perez-Atayde AR, Kozakewich HP (2003). "Rapidly involuting congenital hemangioma: clinical and histopathologic features". Pediatr. Dev. Pathol. 6 (6): 495–510. PMID 15018449.
  19. Nasseri E, Piram M, McCuaig CC, Kokta V, Dubois J, Powell J (January 2014). "Partially involuting congenital hemangiomas: a report of 8 cases and review of the literature". J. Am. Acad. Dermatol. 70 (1): 75–9. doi:10.1016/j.jaad.2013.09.018. PMID 24176519.
  20. "Error 403".
  21. Ramphul K, Mejias SG, Ramphul-Sicharam Y, Sonaye R (April 2018). "Congenital Hemangioma: A Case Report of a Finding Every Physician Should Know". Cureus. 10 (4): e2485. doi:10.7759/cureus.2485. PMC 6003795. PMID 29922526.
  22. Thimm MA, Rhee D, Takemoto CM, Karnsakul W, Cuffari C, Guerrerio AL, Garcia A, Gearhart J, Huisman T, Hwang M (October 2018). "Diagnosis of congenital and acquired focal lesions in the neck, abdomen, and pelvis with contrast-enhanced ultrasound: a pictorial essay". Eur. J. Pediatr. 177 (10): 1459–1470. doi:10.1007/s00431-018-3197-8. PMID 29971555. Vancouver style error: initials (help)
  23. 23.0 23.1 Prasuna A, Rao PN (2015). "A tufted angioma". Indian Dermatol Online J. 6 (4): 266–8. doi:10.4103/2229-5178.160259. PMC 4513407. PMID 26225332.
  24. Jones EW, Orkin M (February 1989). "Tufted angioma (angioblastoma). A benign progressive angioma, not to be confused with Kaposi's sarcoma or low-grade angiosarcoma". J. Am. Acad. Dermatol. 20 (2 Pt 1): 214–25. PMID 2644316.
  25. Pesapane F, Nazzaro G, Alberti-Violetti S, Gianotti R (2015). "A case of acquired tufted angioma in adulthood". An Bras Dermatol. 90 (3 Suppl 1): 16–8. doi:10.1590/abd1806-4841.20153733. PMC 4540497. PMID 26312663.
  26. 26.0 26.1 26.2 Bandyopadhyay D, Saha A (2015). "Multifocal Annular Tufted Angioma: An Uncommon Clinical Entity". Indian J Dermatol. 60 (4): 422. doi:10.4103/0019-5154.160528. PMC 4533571. PMID 26288441.
  27. 27.0 27.1 Lim YH, Bacchiocchi A, Qiu J, Straub R, Bruckner A, Bercovitch L, Narayan D, McNiff J, Ko C, Robinson-Bostom L, Antaya R, Halaban R, Choate KA (August 2016). "GNA14 Somatic Mutation Causes Congenital and Sporadic Vascular Tumors by MAPK Activation". Am. J. Hum. Genet. 99 (2): 443–50. doi:10.1016/j.ajhg.2016.06.010. PMC 4974082. PMID 27476652.
  28. "GNA14 G protein subunit alpha 14 [Homo sapiens (human)] - Gene - NCBI".
  29. Ghosh SK, Bandyopadhyay D, Ghosh A, Biswas SK, Barma KD (July 2011). "Acquired multifocal tufted angiomas in an immunocompetent young adult". Indian J Dermatol. 56 (4): 412–4. doi:10.4103/0019-5154.84741. PMC 3179005. PMID 21965850.
  30. Osio A, Fraitag S, Hadj-Rabia S, Bodemer C, de Prost Y, Hamel-Teillac D (July 2010). "Clinical spectrum of tufted angiomas in childhood: a report of 13 cases and a review of the literature". Arch Dermatol. 146 (7): 758–63. doi:10.1001/archdermatol.2010.135. PMID 20644037.
  31. Chiu CS, Yang LC, Hong HS, Kuan YZ (2007). "Treatment of a tufted angioma with intense pulsed light". J Dermatolog Treat. 18 (2): 109–11. doi:10.1080/09546630601028752. PMID 17520468.
  32. Yesudian PD, Parslew R, Klafowski J, Gould D, Pizer B (February 2008). "Tufted angioma-associated Kasabach-Merritt syndrome treated with embolization and vincristine". Plast. Reconstr. Surg. 121 (2): 692–3. doi:10.1097/01.prs.0000298541.92722.5d. PMID 18301012.
  33. Silva C, Schettini A, Santos M, Chirano C (2017). "Tufted angioma". An Bras Dermatol. 92 (5): 742–743. doi:10.1590/abd1806-4841.20175896. PMC 5674719. PMID 29166525. Vancouver style error: initials (help)
  34. Kimura R, Yoshida Y, Wakumoto K, Yamada N, Yamamoto O (October 2017). "Successful treatment of tufted angioma with low-dose electron beam radiation therapy: Report of two cases". J. Dermatol. 44 (10): e262–e263. doi:10.1111/1346-8138.13936. PMID 28623854.
  35. 35.0 35.1 Murakami K, Yamamoto K, Sugiura T, Kirita T (2018). "Spindle Cell Hemangioma in the Mucosa of the Upper Lip: A Case Report and Review of the Literature". Case Rep Dent. 2018: 1370701. doi:10.1155/2018/1370701. PMC 5892276. PMID 29780644.
  36. 36.0 36.1 Chavva S, Priya MH, Garlapati K, Reddy GS, Gannepalli A (June 2015). "Rare Case of Spindle Cell Haemangioma". J Clin Diagn Res. 9 (6): ZD19–21. doi:10.7860/JCDR/2015/11998.6080. PMC 4525619. PMID 26266229.
  37. 37.0 37.1 Minagawa T, Yamao T, Shioya R (2011). "Spindle cell hemangioendothelioma of the temporal muscle resected with zygomatic osteotomy: a case report of an unusual intramuscular lesion mimicking sarcoma". Case Rep Surg. 2011: 481654. doi:10.1155/2011/481654. PMC 3350060. PMID 22606579.
  38. Pansuriya TC, van Eijk R, d'Adamo P, van Ruler MA, Kuijjer ML, Oosting J, Cleton-Jansen AM, van Oosterwijk JG, Verbeke SL, Meijer D, van Wezel T, Nord KH, Sangiorgi L, Toker B, Liegl-Atzwanger B, San-Julian M, Sciot R, Limaye N, Kindblom LG, Daugaard S, Godfraind C, Boon LM, Vikkula M, Kurek KC, Szuhai K, French PJ, Bovée JV (November 2011). "Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome". Nat. Genet. 43 (12): 1256–61. doi:10.1038/ng.1004. PMC 3427908. PMID 22057234.
  39. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O'Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (February 2012). "IDH mutation impairs histone demethylation and results in a block to cell differentiation". Nature. 483 (7390): 474–8. doi:10.1038/nature10860. PMC 3478770. PMID 22343901.
  40. Gray SS, Eltorky MA, Riascos RF, Montilla RD (June 2012). "Spindle cell hemangioma reoccurrence in the hand: case report". Hand (N Y). 7 (2): 194–9. doi:10.1007/s11552-012-9397-1. PMC 3351523. PMID 23730241.
  41. Perkins P, Weiss SW (October 1996). "Spindle cell hemangioendothelioma. An analysis of 78 cases with reassessment of its pathogenesis and biologic behavior". Am. J. Surg. Pathol. 20 (10): 1196–204. PMID 8827025.
  42. 42.0 42.1 Barber E, Domes T (September 2014). "Painful erections secondary to rare epithelioid hemangioma of the penis". Can Urol Assoc J. 8 (9–10): E647–9. doi:10.5489/cuaj.1833. PMC 4164556. PMID 25295139.
  43. 43.0 43.1 Tsikopoulos K, Perdikakis E, Georgiannos D, Bisbinas I (March 2018). "Epithelioid hemangioma of the scapula treated with chemoembolization and microwave ablation: Α case report". Acta Orthop Traumatol Turc. 52 (2): 157–161. doi:10.1016/j.aott.2017.01.003. PMC 6136344. PMID 28159479.
  44. Gong QX, Fan QH, Xie J, Su ZL, Zhang MH, Zhang ZH (September 2013). "[Epithelioid hemangioma: a clinicopathologic analysis of 7 cases]". Zhonghua Bing Li Xue Za Zhi (in Chinese). 42 (9): 593–8. PMID 24314244.
  45. Milde-Langosch K (November 2005). "The Fos family of transcription factors and their role in tumourigenesis". Eur. J. Cancer. 41 (16): 2449–61. doi:10.1016/j.ejca.2005.08.008. PMID 16199154.
  46. Durchdewald M, Angel P, Hess J (November 2009). "The transcription factor Fos: a Janus-type regulator in health and disease". Histol. Histopathol. 24 (11): 1451–61. doi:10.14670/HH-24.1451. PMID 19760594.
  47. Marconcini L, Marchio S, Morbidelli L, Cartocci E, Albini A, Ziche M, Bussolino F, Oliviero S (August 1999). "c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro". Proc. Natl. Acad. Sci. U.S.A. 96 (17): 9671–6. PMC 22268. PMID 10449752.
  48. Huang SC, Zhang L, Sung YS, Chen CL, Krausz T, Dickson BC, Kao YC, Agaram NP, Fletcher CD, Antonescu CR (October 2015). "Frequent FOS Gene Rearrangements in Epithelioid Hemangioma: A Molecular Study of 58 Cases With Morphologic Reappraisal". Am. J. Surg. Pathol. 39 (10): 1313–21. doi:10.1097/PAS.0000000000000469. PMC 4567921. PMID 26135557.
  49. Gérard V, Tomasella M, Kurth W, Brands G, Lognard M (April 2015). "[Epithelioid hemangioma, a rare bone tumor]". Rev Med Liege (in French). 70 (4): 169–71. PMID 26054166.
  50. Marla V, Shrestha A, Goel K, Shrestha S (2016). "The Histopathological Spectrum of Pyogenic Granuloma: A Case Series". Case Rep Dent. 2016: 1323798. doi:10.1155/2016/1323798. PMC 4921146. PMID 27382492.
  51. 51.0 51.1 51.2 Thada SR, Pai KM, Agarwal P (May 2014). "A huge oral pyogenic granuloma with extensive alveolar bone loss and 'sun-ray' appearance mimicking a malignant tumour". BMJ Case Rep. 2014. doi:10.1136/bcr-2013-202367. PMC 4039851. PMID 24859551.
  52. 52.0 52.1 52.2 Wollina U, Langner D, França K, Gianfaldoni S, Lotti T, Tchernev G (July 2017). "Pyogenic Granuloma - A Common Benign Vascular Tumor with Variable Clinical Presentation: New Findings and Treatment Options". Open Access Maced J Med Sci. 5 (4): 423–426. doi:10.3889/oamjms.2017.111. PMC 5535648. PMID 28785323.
  53. 53.0 53.1 Kamal R, Dahiya P, Puri A (January 2012). "Oral pyogenic granuloma: Various concepts of etiopathogenesis". J Oral Maxillofac Pathol. 16 (1): 79–82. doi:10.4103/0973-029X.92978. PMC 3303528. PMID 22434943.
  54. Simmons BJ, Chen L, Hu S (November 2016). "Pyogenic granuloma association with isotretinoin treatment for acne". Australas. J. Dermatol. 57 (4): e144–e145. doi:10.1111/ajd.12418. PMID 27885661.
  55. Inoue A, Sawada Y, Nishio D, Nakamura M (February 2017). "Pyogenic granuloma caused by afatinib: Case report and review of the literature". Australas. J. Dermatol. 58 (1): 61–62. doi:10.1111/ajd.12423. PMID 26603180.
  56. Henning B, Stieger P, Kamarachev J, Dummer R, Goldinger SM (June 2016). "Pyogenic granuloma in patients treated with selective BRAF inhibitors: another manifestation of paradoxical pathway activation". Melanoma Res. 26 (3): 304–7. doi:10.1097/CMR.0000000000000248. PMID 27116335.
  57. Groesser L, Peterhof E, Evert M, Landthaler M, Berneburg M, Hafner C (February 2016). "BRAF and RAS Mutations in Sporadic and Secondary Pyogenic Granuloma". J. Invest. Dermatol. 136 (2): 481–6. doi:10.1038/JID.2015.376. PMID 26802240.
  58. Giblin AV, Clover AJ, Athanassopoulos A, Budny PG (2007). "Pyogenic granuloma - the quest for optimum treatment: audit of treatment of 408 cases". J Plast Reconstr Aesthet Surg. 60 (9): 1030–5. doi:10.1016/j.bjps.2006.10.018. PMID 17478135.
  59. Al-Mohaya MA, Al-Malik AM (December 2016). "Excision of oral pyogenic granuloma in a diabetic patient with 940nm diode laser". Saudi Med J. 37 (12): 1395–1400. doi:10.15537/smj.2016.12.15941. PMC 5303780. PMID 27874157.
  60. Malik M, Murphy R (December 2014). "A pyogenic granuloma treated with topical timolol". Br. J. Dermatol. 171 (6): 1537–8. doi:10.1111/bjd.13116. PMID 24836966.
  61. Millsop JW, Trinh N, Winterfield L, Berrios R, Hutchens KA, Tung R (March 2014). "Resolution of recalcitrant pyogenic granuloma with laser, corticosteroid, and timolol therapy". Dermatol. Online J. 20 (3). PMID 24656264.
  62. Hiremath SK, Charantimath S, Byakodi S, Bijjal S, Byakodi R, Sapra G (July 2013). "Oral hobnail hemangioma: a case report". Arch Iran Med. 16 (7): 428–30. doi:013167/AIM.0013 Check |doi= value (help). PMID 23808782.
  63. Yoon SY, Kwon HH, Jeon HC, Lee JH, Cho S (November 2011). "Congenital and multiple hobnail hemangiomas". Ann Dermatol. 23 (4): 539–43. doi:10.5021/ad.2011.23.4.539. PMC 3229956. PMID 22148030.
  64. Takayama R, Ueno T, Futagami A, Ansai S, Fukumoto T, Saeki H (2015). "Hobnail Hemangioma: A Case Report". J Nippon Med Sch. 82 (3): 151–5. doi:10.1272/jnms.82.151. PMID 26156669.
  65. Hu PA, Zhou ZR (June 2018). "Clinical and imaging features of Kaposiform Hemangioendothelioma". Br J Radiol. 91 (1086): 20170798. doi:10.1259/bjr.20170798. PMID 29536769.
  66. 66.0 66.1 "Letter: Prevention of coronary heart-disease". Lancet. 2 (7980): 313–4. August 1976. PMID 59885.
  67. Schmid I, Klenk AK, Sparber-Sauer M, Koscielniak E, Maxwell R, Häberle B (2018). "Kaposiform hemangioendothelioma in children: a benign vascular tumor with multiple treatment options". World J Pediatr. 14 (4): 322–329. doi:10.1007/s12519-018-0171-5. PMID 30054848.
  68. 68.0 68.1 68.2 Ranga SM, Kuchangi NC, Shankar VS, Amita K, Haleuoor BB, Belagola SD (November 2014). "Retiform hemangioendothelioma: an uncommon pediatric vascular neoplasm". Indian J Dermatol. 59 (6): 633. doi:10.4103/0019-5154.143583. PMC 4248535. PMID 25484427.
  69. © 1999 Lippincott Williams & Wilkins, Inc.
  70. https://www.dovemed.com/diseases-conditions/papillary-intralymphatic-angioendothelioma-pila/
  71. https://www.dovemed.com/diseases-conditions/papillary-intralymphatic-angioendothelioma-pila/
  72. 72.0 72.1 72.2 Rokni GR, Montazer F, Sharifian M, Goldust M (December 2017). "Composite hemangioendothelioma of the forehead and right eye; a case report". BMC Dermatol. 17 (1): 15. doi:10.1186/s12895-017-0067-4. PMC 5727897. PMID 29233122.
  73. Shang Leen SL, Fisher C, Thway K (July 2015). "Composite hemangioendothelioma: clinical and histologic features of an enigmatic entity". Adv Anat Pathol. 22 (4): 254–9. doi:10.1097/PAP.0000000000000079. PMID 26050262.
  74. https://www.jpatholtm.org/upload/pdf/kjp-40-2-142.pdf
  75. 75.0 75.1 75.2 van IJzendoorn D, Sleijfer S, Gelderblom H, Eskens F, van Leenders G, Szuhai K, Bovée J (June 2018). "Telatinib Is an Effective Targeted Therapy for Pseudomyogenic Hemangioendothelioma". Clin. Cancer Res. 24 (11): 2678–2687. doi:10.1158/1078-0432.CCR-17-3512. PMID 29511030. Vancouver style error: initials (help)
  76. 76.0 76.1 Raftopoulos E, Royer M, Warren M, Zhao J, Rush W (August 2018). "Pseudomyogenic Hemangioendothelioma: Case Report and Review of the Literature". Am J Dermatopathol. 40 (8): 597–601. doi:10.1097/DAD.0000000000001104. PMID 29406432.
  77. https://en.wikipedia.org/wiki/FOSB
  78. Joseph J, Wang WL, Patnana M, Ramesh N, Benjamin R, Patel S, Ravi V (2015). "Cytotoxic and targeted therapy for treatment of pseudomyogenic hemangioendothelioma". Clin Sarcoma Res. 5: 22. doi:10.1186/s13569-015-0037-8. PMC 4615364. PMID 26500758.
  79. Gabor KM, Sapi Z, Tiszlavicz LG, Fige A, Bereczki C, Bartyik K (February 2018). "Sirolimus therapy in the treatment of pseudomyogenic hemangioendothelioma". Pediatr Blood Cancer. 65 (2). doi:10.1002/pbc.26781. PMID 28843050.
  80. 80.0 80.1 El Hussein S, Omarzai Y (May 2017). "Multifocal Polymorphous Hemangioendothelioma of the Liver: Case Report and Review of Literature". Int. J. Surg. Pathol. 25 (3): 266–270. doi:10.1177/1066896916679517. PMID 27913780.
  81. Tadros M, Rizk SS, Opher E, Thompson LD (June 2003). "Polymorphous hemangioendothelioma of the neck". Ann Diagn Pathol. 7 (3): 165–8. PMID 12808568.
  82. Falleti J, Siano M, De Cecio R, Somma A, Pettinato G, Insabato L (2009). "Nodal and extranodal soft tissue polymorphous hemangioendothelioma: a case report and review of the literature". Tumori. 95 (1): 94–7. PMID 19366064.
  83. Khan S, Guevara J, Barbosa A, Ayuby A, Bien-Aime F, Verda L, Glick N, Mehta V (2018). "Primary pulmonary Kaposi Sarcoma in a newly diagnosed cisgender heterosexual HIV positive patient presenting before cutaneous manifestations". IDCases. 14: e00420. doi:10.1016/j.idcr.2018.e00420. PMC 6125769. PMID 30191128.
  84. From Dorland, 27th ed and Holland et al., Cancer Medicine, 3d ed, pp2105-7
  85. Piccolo V, Russo T, Moscarella E, Brancaccio G, Alfano R, Argenziano G (October 2018). "Dermatoscopy of Vascular Lesions". Dermatol Clin. 36 (4): 389–395. doi:10.1016/j.det.2018.05.006. PMID 30201148.
  86. Villaescusa Catalan JM, Martín IG, Cagigal Cobo ML (September 2018). "Popliteal Angiosarcoma After Bypass With Autologous Saphenous Vein". Ann Vasc Surg. doi:10.1016/j.avsg.2018.06.034. PMID 30217704.
  87. Udager AM, Ishikawa MK, Lucas DR, McHugh JB, Patel RM (December 2016). "MYC immunohistochemistry in angiosarcoma and atypical vascular lesions: practical considerations based on a single institutional experience". Pathology. 48 (7): 697–704. doi:10.1016/j.pathol.2016.08.007. PMID 27780597.
  88. Priyakumari T, Chandar R, Jayasree K, Ramachandran K (September 2018). "Pediatric Primary Ovarian Angiosarcoma: From rarity to a realization". J Pediatr Adolesc Gynecol. doi:10.1016/j.jpag.2018.08.008. PMID 30179666.
  89. 89.0 89.1 Sardaro A, Bardoscia L, Petruzzelli MF, Portaluri M (September 2014). "Epithelioid hemangioendothelioma: an overview and update on a rare vascular tumor". Oncol Rev. 8 (2): 259. doi:10.4081/oncol.2014.259. PMC 4419652. PMID 25992243.
  90. Errani C, Zhang L, Sung YS, Hajdu M, Singer S, Maki RG, Healey JH, Antonescu CR (August 2011). "A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites". Genes Chromosomes Cancer. 50 (8): 644–53. doi:10.1002/gcc.20886. PMC 3264678. PMID 21584898.
  91. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ, Flanagan J, Luo Y, Fenwick K, Natrajan R, Mitsopoulos C, Zvelebil M, Hoch BL, Weiss SW, Debiec-Rychter M, Sciot R, West RB, Lazar AJ, Ashworth A, Reis-Filho JS, Lord CJ, Gerstein MB, Rubin MA, Rubin BP (August 2011). "Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma". Sci Transl Med. 3 (98): 98ra82. doi:10.1126/scitranslmed.3002409. PMID 21885404.
  92. 92.0 92.1 Juern AM, Glick ZR, Drolet BA, Frieden IJ (November 2010). "Nevus simplex: a reconsideration of nomenclature, sites of involvement, and disease associations". J. Am. Acad. Dermatol. 63 (5): 805–14. doi:10.1016/j.jaad.2009.08.066. PMID 20728246.
  93. Cohen BA (January 1987). "Hemangiomas in infancy and childhood". Pediatr Ann. 16 (1): 17–26. PMID 3562091.
  94. "Port-Wine Stain - MeSH - NCBI".
  95. 95.0 95.1 Frigerio A, Wright K, Wooderchak-Donahue W, Tan OT, Margraf R, Stevenson DA, Grimmer JF, Bayrak-Toydemir P (2015). "Genetic Variants Associated with Port-Wine Stains". PLoS ONE. 10 (7): e0133158. doi:10.1371/journal.pone.0133158. PMC 4508108. PMID 26192947.
  96. Waelchli R, Aylett SE, Robinson K, Chong WK, Martinez AE, Kinsler VA (October 2014). "New vascular classification of port-wine stains: improving prediction of Sturge-Weber risk". Br. J. Dermatol. 171 (4): 861–7. doi:10.1111/bjd.13203. PMC 4284033. PMID 24976116.
  97. Lee JW, Chung HY (FebInvestigationsruary 2018). "Capillary Malformations (Portwine Stains) of the Head and Neck: Natural History, , Laser, and Surgical Management". Otolaryngol. Clin. North Am. 51 (1): 197–211. doi:10.1016/j.otc.2017.09.004. PMID 29217063. Check date values in: |date= (help)
  98. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, Clapuyt P, Hammer F, Dubois J, Baselga E, Brancati F, Carder R, Quintal JM, Dallapiccola B, Fischer G, Frieden IJ, Garzon M, Harper J, Johnson-Patel J, Labrèze C, Martorell L, Paltiel HJ, Pohl A, Prendiville J, Quere I, Siegel DH, Valente EM, Van Hagen A, Van Hest L, Vaux KK, Vicente A, Weibel L, Chitayat D, Vikkula M (July 2008). "Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations". Hum. Mutat. 29 (7): 959–65. doi:10.1002/humu.20746. PMID 18446851.
  99. Thiex R, Mulliken JB, Revencu N, Boon LM, Burrows PE, Cordisco M, Dwight Y, Smith ER, Vikkula M, Orbach DB (April 2010). "A novel association between RASA1 mutations and spinal arteriovenous anomalies". AJNR Am J Neuroradiol. 31 (4): 775–9. doi:10.3174/ajnr.A1907. PMID 20007727.
  100. Amitai DB, Fichman S, Merlob P, Morad Y, Lapidoth M, Metzker A (2000). "Cutis marmorata telangiectatica congenita: clinical findings in 85 patients". Pediatr Dermatol. 17 (2): 100–4. PMID 10792796.
  101. Ponnurangam VN, Paramasivam V. Cutis marmorata telangiectatica congenita. Indian Dermatol Online J [serial online] 2014 [cited 2018 Sep 25];5:80-2. Available from: http://www.idoj.in/text.asp?2014/5/1/80/126042
  102. Ponnurangam VN, Paramasivam V. Cutis marmorata telangiectatica congenita. Indian Dermatol Online J [serial online] 2014 [cited 2018 Sep 25];5:80-2. Available from: http://www.idoj.in/text.asp?2014/5/1/80/126042
  103. Ponnurangam VN, Paramasivam V. Cutis marmorata telangiectatica congenita. Indian Dermatol Online J [serial online] 2014 [cited 2018 Sep 25];5:80-2. Available from: http://www.idoj.in/text.asp?2014/5/1/80/126042
  104. "Cutis marmorata telangiectatica congenita - MeSH - NCBI".
  105. Kienast AK, Hoeger PH (April 2009). "Cutis marmorata telangiectatica congenita: a prospective study of 27 cases and review of the literature with proposal of diagnostic criteria". Clin. Exp. Dermatol. 34 (3): 319–23. doi:10.1111/j.1365-2230.2008.03074.x. PMID 19196300.
  106. Dohil MA, Baugh WP, Eichenfield LF (August 2000). "Vascular and pigmented birthmarks". Pediatr. Clin. North Am. 47 (4): 783–812, v–vi. PMID 10943257.
  107. [+++++https://www.ncbi.nlm.nih.gov/mesh/?term=D013684 "Telangiectasis - MeSH - NCBI"] Check |url= value (help).
  108. Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC, Lord DJ, Mitchel S, Powell J, Prendiville J, Vikkula M (July 2015). "Vascular Anomalies Classification: Recommendations From the International Society for the Study of Vascular Anomalies". Pediatrics. 136 (1): e203–14. doi:10.1542/peds.2014-3673. PMID 26055853.
  109. http://www.issva.org/UserFiles/file/ISSVA-Classification-2018.pdf
  110. Çalışkan E, Altunel CT, Özkan CK, Tunca M (August 2018). "A case of microcystic lymphatic malformation successfully treated with topical sirolimus". Dermatol Ther: e12673. doi:10.1111/dth.12673. PMID 30133999.
  111. 111.0 111.1 111.2 111.3 111.4 Du H, Xiong M, Liao H, Luo Y, Shi H, Xie C (June 2018). "Chylothorax and constrictive pericarditis in a woman due to generalized lymphatic anomaly: a case report". J Cardiothorac Surg. 13 (1): 59. doi:10.1186/s13019-018-0752-3. PMC 5989411. PMID 29871646.
  112. Manevitz-Mendelson E, Leichner GS, Barel O, Davidi-Avrahami I, Ziv-Strasser L, Eyal E, Pessach I, Rimon U, Barzilai A, Hirshberg A, Chechekes K, Amariglio N, Rechavi G, Yaniv K, Greenberger S (May 2018). "Somatic NRAS mutation in patient with generalized lymphatic anomaly". Angiogenesis. 21 (2): 287–298. doi:10.1007/s10456-018-9595-8. PMID 29397482.
  113. Levine C (March 1989). "Primary disorders of the lymphatic vessels--a unified concept". J. Pediatr. Surg. 24 (3): 233–40. PMID 2709285.
  114. Faul JL, Berry GJ, Colby TV, Ruoss SJ, Walter MB, Rosen GD, Raffin TA (March 2000). "Thoracic lymphangiomas, lymphangiectasis, lymphangiomatosis, and lymphatic dysplasia syndrome". Am. J. Respir. Crit. Care Med. 161 (3 Pt 1): 1037–46. doi:10.1164/ajrccm.161.3.9904056. PMID 10712360.
  115. 115.0 115.1 Kadakia KC, Patel SM, Yi ES, Limper AH (2013). "Diffuse pulmonary lymphangiomatosis". Can. Respir. J. 20 (1): 52–4. doi:10.1155/2013/971350. PMC 3628648. PMID 23457676.
  116. Ludwig KF, Slone T, Cederberg KB, Silva AT, Dellinger M (June 2016). "A New Case and Review of Chylothorax in Generalized Lymphatic Anomaly and Gorham-Stout Disease". Lymphology. 49 (2): 73–84. PMID 29906363.
  117. Aviv RI, McHugh K, Hunt J (March 2001). "Angiomatosis of bone and soft tissue: a spectrum of disease from diffuse lymphangiomatosis to vanishing bone disease in young patients". Clin Radiol. 56 (3): 184–90. doi:10.1053/crad.2000.0606. PMID 11247693.
  118. Satria MN, Pacheco-Rodriguez G, Moss J (2011). "Pulmonary lymphangiomatosis". Lymphat Res Biol. 9 (4): 191–3. doi:10.1089/lrb.2011.0023. PMC 3246407. PMID 22196284.
  119. Sevick-Muraca EM, Kwon S, Rasmussen JC (March 2014). "Emerging lymphatic imaging technologies for mouse and man". J. Clin. Invest. 124 (3): 905–14. doi:10.1172/JCI71612. PMC 3938259. PMID 24590275.
  120. Lohrmann C, Foeldi E, Langer M (November 2011). "Assessment of the lymphatic system in patients with diffuse lymphangiomatosis by magnetic resonance imaging". Eur J Radiol. 80 (2): 576–81. doi:10.1016/j.ejrad.2009.10.021. PMID 19913379.
  121. 121.0 121.1 Wang Z, Li K, Yao W, Dong K, Xiao X, Zheng S (July 2015). "Successful treatment of kaposiform lymphangiomatosis with sirolimus". Pediatr Blood Cancer. 62 (7): 1291–3. doi:10.1002/pbc.25422. PMID 25598153.
  122. 122.0 122.1 Croteau SE, Kozakewich HP, Perez-Atayde AR, Fishman SJ, Alomari AI, Chaudry G, Mulliken JB, Trenor CC (February 2014). "Kaposiform lymphangiomatosis: a distinct aggressive lymphatic anomaly". J. Pediatr. 164 (2): 383–8. doi:10.1016/j.jpeds.2013.10.013. PMC 3946828. PMID 24252784.
  123. Fernandes VM, Fargo JH, Saini S, Guerrera MF, Marcus L, Luchtman-Jones L, Adams D, Meier ER (May 2015). "Kaposiform lymphangiomatosis: unifying features of a heterogeneous disorder". Pediatr Blood Cancer. 62 (5): 901–4. doi:10.1002/pbc.25278. PMID 25307772.
  124. Klein M, Metelmann HR, Gross U (October 1996). "Massive osteolysis (Gorham-Stout syndrome) in the maxillofacial region: an unusual manifestation". Int J Oral Maxillofac Surg. 25 (5): 376–8. PMID 8961021.
  125. Radhakrishnan K, Rockson SG (2008). "The clinical spectrum of lymphatic disease". Ann. N. Y. Acad. Sci. 1131: 155–84. doi:10.1196/annals.1413.015. PMID 18519969.
  126. 126.0 126.1 126.2 Lala S, Mulliken JB, Alomari AI, Fishman SJ, Kozakewich HP, Chaudry G (July 2013). "Gorham-Stout disease and generalized lymphatic anomaly--clinical, radiologic, and histologic differentiation". Skeletal Radiol. 42 (7): 917–24. doi:10.1007/s00256-012-1565-4. PMID 23371338.
  127. Tanoue N, Moedano L, Witte M, Montague M, Lukefahr A, Bernas M (2018). "Primary versus trauma-induced Gorham-Stout disease". Lymphology. 51 (1): 18–27. PMID 30248728.
  128. Meijer-Jorna LB, van der Loos CM, de Boer OJ, van der Horst CM, van der Wal AC (July 2007). "Microvascular proliferation in congenital vascular malformations of skin and soft tissue". J. Clin. Pathol. 60 (7): 798–803. doi:10.1136/jcp.2006.038885. PMC 1995770. PMID 16816171.
  129. Radhakrishnan K, Rockson SG (2008). "Gorham's disease: an osseous disease of lymphangiogenesis?". Ann. N. Y. Acad. Sci. 1131: 203–5. doi:10.1196/annals.1413.022. PMID 18519972.
  130. Hagendoorn J, Padera TP, Yock TI, Nielsen GP, di Tomaso E, Duda DG, Delaney TF, Gaissert HA, Pearce J, Rosenberg AE, Jain RK, Ebb DH (December 2006). "Platelet-derived growth factor receptor-beta in Gorham's disease". Nat Clin Pract Oncol. 3 (12): 693–7. doi:10.1038/ncponc0660. PMC 2693369. PMID 17139320.
  131. Devlin RD, Bone HG, Roodman GD (May 1996). "Interleukin-6: a potential mediator of the massive osteolysis in patients with Gorham-Stout disease". J. Clin. Endocrinol. Metab. 81 (5): 1893–7. doi:10.1210/jcem.81.5.8626854. PMID 8626854.
  132. Garbers E, Reuther F, Delling G (2011). "Report of a rare case of gorham-stout disease of both shoulders: bisphosphonate treatment and shoulder replacement". Case Rep Rheumatol. 2011: 565142. doi:10.1155/2011/565142. PMC 3420766. PMID 22937447.
  133. 133.0 133.1 133.2 Duffy BM, Manon R, Patel RR, Welsh JS (May 2005). "A case of Gorham's disease with chylothorax treated curatively with radiation therapy". Clin Med Res. 3 (2): 83–6. PMC 1183437. PMID 16012125.
  134. Fontanesi J (October 2003). "Radiation therapy in the treatment of Gorham disease". J. Pediatr. Hematol. Oncol. 25 (10): 816–7. PMID 14528108.
  135. Mulvihill D, Kumar RS, Muzaffar J, Irving R (March 2018). "Gorham-Stout disease of the temporal bone involving the temporomandibular joint". J Laryngol Otol. 132 (3): 279–281. doi:10.1017/S0022215118000099. PMID 29363434.
  136. Noda M, Endo C, Hoshikawa Y, Ishibashi N, Suzuki T, Okada Y, Kondo T (June 2013). "Successful management of intractable chylothorax in Gorham-Stout disease by awake thoracoscopic surgery". Gen Thorac Cardiovasc Surg. 61 (6): 356–8. doi:10.1007/s11748-012-0130-3. PMID 22865280.
  137. Alkhalili E, Ayoubieh H, O'Brien W, Billings SD (September 2014). "Acquired progressive lymphangioma of the nipple". BMJ Case Rep. 2014. doi:10.1136/bcr-2014-205966. PMC 4173197. PMID 25246470.
  138. Messeguer F, Sanmartín O, Martorell-Calatayud A, Nagore E, Requena C, Guillén-Barona C (November 2010). "[Acquired progressive lymphangioma (benign lymphangioendothelioma)]". Actas Dermosifiliogr (in Spanish; Castilian). 101 (9): 792–7. PMID 21034710.
  139. Meunier L, Barneon G, Meynadier J (November 1994). "Acquired progressive lymphangioma". Br. J. Dermatol. 131 (5): 706–8. PMID 7999605.
  140. Paredes Esteban RM, Velasco Sánchez B, Martínez-Victoria Muñoz JM, Cuevas C, García Ruiz M (October 2000). "[Progressive acquired lymphangioma: report of a case and review of the literature]". Cir Pediatr (in Spanish; Castilian). 13 (4): 170–1. PMID 12601956.
  141. Larkin SC, Wentworth AB, Lehman JS, Tollefson MM (July 2018). "A case of extensive acquired progressive lymphangioma". Pediatr Dermatol. 35 (4): 486–489. doi:10.1111/pde.13486. PMID 29633311.
  142. Salman A, Sarac G, Can Kuru B, Cinel L, Yucelten AD, Ergun T (November 2017). "Acquired progressive lymphangioma: Case report with partial response to imiquimod 5% cream". Pediatr Dermatol. 34 (6): e302–e304. doi:10.1111/pde.13283. PMID 28940760.
  143. 143.0 143.1 Szuba A, Rockson SG (1998). "Lymphedema: classification, diagnosis and therapy". Vasc Med. 3 (2): 145–56. doi:10.1177/1358836X9800300209. PMID 9796078.
  144. Lev-Sagie A, Hamani Y, Raas-Rothschild A, Yagel S, Anteby EY (January 2003). "Prenatal ultrasonographic diagnosis of atypical Nonne-Milroy lymphedema". Ultrasound Obstet Gynecol. 21 (1): 72–4. doi:10.1002/uog.16. PMID 12528167.
  145. 145.0 145.1 Zbranca V, Aramă A, Mihăescu T, Covic M (1990). "[Hereditary lymphedema (Nonne-Milroy-Meige syndrome) associated with chylothorax. Comments on 2 cases]". Rev Med Chir Soc Med Nat Iasi (in Romanian). 94 (1): 189–92. PMID 2075326.
  146. 146.0 146.1 "Milroy disease - Genetics Home Reference - NIH".
  147. 147.0 147.1 Spiegel R, Ghalamkarpour A, Daniel-Spiegel E, Vikkula M, Shalev SA (2006). "Wide clinical spectrum in a family with hereditary lymphedema type I due to a novel missense mutation in VEGFR3". J. Hum. Genet. 51 (10): 846–50. doi:10.1007/s10038-006-0031-3. PMID 16924388.
  148. 148.0 148.1 Nadarajah N, Schulte D, McConnell V, Martin-Almedina S, Karapouliou C, Mortimer PS, Jeffery S, Schulte-Merker S, Gordon K, Mansour S, Ostergaard P (August 2018). "A Novel Splice-Site Mutation in VEGFC Is Associated with Congenital Primary Lymphoedema of Gordon". Int J Mol Sci. 19 (8). doi:10.3390/ijms19082259. PMC 6121331. PMID 30071673.
  149. 149.0 149.1 "VEGFC gene - Genetics Home Reference - NIH".
  150. 150.0 150.1 "GJC2 gene - Genetics Home Reference - NIH".
  151. Brice G, Ostergaard P, Jeffery S, Gordon K, Mortimer PS, Mansour S (October 2013). "A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family". Clin. Genet. 84 (4): 378–81. doi:10.1111/cge.12158. PMID 23550541.
  152. 152.0 152.1 Marques NS, Miranda A, Barros S, Parreira S (January 2016). "Lymphoedema-distichiasis syndrome". BMJ Case Rep. 2016. doi:10.1136/bcr-2015-213651. PMC 4716369. PMID 26759405.
  153. Yabuki S, Kikuchi S, Ikegawa S (April 2007). "Spinal extradural arachnoid cysts associated with distichiasis and lymphedema". Am. J. Med. Genet. A. 143A (8): 884–7. doi:10.1002/ajmg.a.31669. PMID 17366583.
  154. Brice G, Mansour S, Bell R, Collin JR, Child AH, Brady AF, Sarfarazi M, Burnand KG, Jeffery S, Mortimer P, Murday VA (July 2002). "Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24". J. Med. Genet. 39 (7): 478–83. PMC 1735188. PMID 12114478.
  155. Sardesai VR, Mhatre MA, Patil RM (2012). "Lymphoedema - distichiasis syndrome with recurrent abortions". Indian J Med Sci. 66 (5–6): 141–3. doi:10.4103/0019-5359.114202. PMID 23806988.
  156. 156.0 156.1 Planinsek Rucigaj T, Rijavec M, Miljkovic J, Selb J, Korosec P (September 2017). "A Novel Mutation in the FOXC2 Gene: A Heterozygous Insertion of Adenosine (c.867insA) in a Family with Lymphoedema of Lower Limbs without Distichiasis". Radiol Oncol. 51 (3): 363–368. doi:10.1515/raon-2017-0026. PMC 5612002. PMID 28959174.
  157. De Niear MA, Breazzano MP, Mawn LA (2018). "Novel FOXC2 Mutation and Distichiasis in a Patient With Lymphedema-Distichiasis Syndrome". Ophthalmic Plast Reconstr Surg. 34 (3): e88–e90. doi:10.1097/IOP.0000000000001079. PMID 29406328.
  158. Zhu LL, Lv YN, Chen HD, Gao XH (August 2014). "A Chinese pedigree of lymphoedema-distichiasis syndrome with a novel mutation in the FOXC2 gene". Clin. Exp. Dermatol. 39 (6): 731–3. doi:10.1111/ced.12389. PMID 24984567.
  159. Zhang L, He J, Han B, Lu L, Fan J, Zhang H, Ge S, Zhou Y, Jia R, Fan X (2016). "Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation". Int. J. Biol. Sci. 12 (9): 1114–20. doi:10.7150/ijbs.13774. PMC 4997055. PMID 27570485.
  160. Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean L, Stephens K, Amemiya A, Mansour S, Brice GW, Jeffery S, Mortimer P. PMID 20301630. Vancouver style error: initials (help); Missing or empty |title= (help)
  161. "Hypotrichosis-lymphedema-telangiectasia syndrome | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program".
  162. Wünnemann F, Kokta V, Leclerc S, Thibeault M, McCuaig C, Hatami A, Stheneur C, Grenier JC, Awadalla P, Mitchell GA, Andelfinger G, Preuss C (January 2016). "Aortic Dilatation Associated With a De Novo Mutation in the SOX18 Gene: Expanding the Clinical Spectrum of Hypotrichosis-Lymphedema-Telangiectasia Syndrome". Can J Cardiol. 32 (1): 135.e1–7. doi:10.1016/j.cjca.2015.04.004. PMID 26148450.
  163. Moalem S, Brouillard P, Kuypers D, Legius E, Harvey E, Taylor G, Francois M, Vikkula M, Chitayat D (April 2015). "Hypotrichosis-lymphedema-telangiectasia-renal defect associated with a truncating mutation in the SOX18 gene". Clin. Genet. 87 (4): 378–82. doi:10.1111/cge.12388. PMID 24697860.
  164. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M (June 2003). "Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia". Am. J. Hum. Genet. 72 (6): 1470–8. doi:10.1086/375614. PMC 1180307. PMID 12740761.
  165. Valenzuela I, Fernández-Alvarez P, Plaja A, Ariceta G, Sabaté-Rotés A, García-Arumí E, Vendrell T, Tizzano E (May 2018). "Further delineation of the SOX18-related Hypotrichosis, Lymphedema, Telangiectasia syndrome (HTLS)". Eur J Med Genet. 61 (5): 269–272. doi:10.1016/j.ejmg.2018.01.001. PMID 29307792.
  166. Bastaki F, Mohamed M, Nair P, Saif F, Tawfiq N, Al-Ali MT, Brandau O, Hamzeh AR (February 2016). "A novel SOX18 mutation uncovered in Jordanian patient with hypotrichosis-lymphedema-telangiectasia syndrome by Whole Exome Sequencing". Mol. Cell. Probes. 30 (1): 18–21. doi:10.1016/j.mcp.2015.11.005. PMID 26631803.
  167. Wünnemann F, Kokta V, Leclerc S, Thibeault M, McCuaig C, Hatami A, Stheneur C, Grenier JC, Awadalla P, Mitchell GA, Andelfinger G, Preuss C (January 2016). "Aortic Dilatation Associated With a De Novo Mutation in the SOX18 Gene: Expanding the Clinical Spectrum of Hypotrichosis-Lymphedema-Telangiectasia Syndrome". Can J Cardiol. 32 (1): 135.e1–7. doi:10.1016/j.cjca.2015.04.004. PMID 26148450.
  168. Moalem S, Brouillard P, Kuypers D, Legius E, Harvey E, Taylor G, Francois M, Vikkula M, Chitayat D (April 2015). "Hypotrichosis-lymphedema-telangiectasia-renal defect associated with a truncating mutation in the SOX18 gene". Clin. Genet. 87 (4): 378–82. doi:10.1111/cge.12388. PMID 24697860.Downes M, François M, Ferguson C, Parton RG, Koopman P (August 2009). "Vascular defects in a mouse model of hypotrichosis-lymphedema-telangiectasia syndrome indicate a role for SOX18 in blood vessel maturation". Hum. Mol. Genet. 18 (15): 2839–50. doi:10.1093/hmg/ddp219. PMID 19429912.
  169. François M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, Paavonen K, Karnezis T, Shayan R, Downes M, Davidson T, Tutt D, Cheah KS, Stacker SA, Muscat GE, Achen MG, Dejana E, Koopman P (December 2008). "Sox18 induces development of the lymphatic vasculature in mice". Nature. 456 (7222): 643–7. doi:10.1038/nature07391. PMID 18931657.
  170. Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M (June 2003). "Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia". Am. J. Hum. Genet. 72 (6): 1470–8. doi:10.1086/375614. PMC 1180307. PMID 12740761.
  171. "Hypotrichosis-lymphedema-telangiectasia syndrome | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program".
  172. "Hypotrichosis-lymphedema-telangiectasia syndrome | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program".
  173. Valenzuela I, Fernández-Alvarez P, Plaja A, Ariceta G, Sabaté-Rotés A, García-Arumí E, Vendrell T, Tizzano E (May 2018). "Further delineation of the SOX18-related Hypotrichosis, Lymphedema, Telangiectasia syndrome (HTLS)". Eur J Med Genet. 61 (5): 269–272. doi:10.1016/j.ejmg.2018.01.001. PMID 29307792.
  174. 174.0 174.1 174.2 Seo SK, Kim KY, Han SA, Yoon JS, Shin SY, Sohn SK, Moon JH (January 2016). "First Korean case of Emberger syndrome (primary lymphedema with myelodysplasia) with a novel GATA2 gene mutation". Korean J. Intern. Med. 31 (1): 188–90. doi:10.3904/kjim.2016.31.1.188. PMC 4712426. PMID 26767875.
  175. 175.0 175.1 Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, Dafou D, Kilo T, Smithson S, Lunt P, Murday VA, Hodgson S, Keenan R, Pilz DT, Martinez-Corral I, Makinen T, Mortimer PS, Jeffery S, Trembath RC, Mansour S (September 2011). "Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome)". Nat. Genet. 43 (10): 929–31. doi:10.1038/ng.923. PMID 21892158.
  176. 176.0 176.1 176.2 Mansour S, Connell F, Steward C, Ostergaard P, Brice G, Smithson S, Lunt P, Jeffery S, Dokal I, Vulliamy T, Gibson B, Hodgson S, Cottrell S, Kiely L, Tinworth L, Kalidas K, Mufti G, Cornish J, Keenan R, Mortimer P, Murday V (September 2010). "Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases". Am. J. Med. Genet. A. 152A (9): 2287–96. doi:10.1002/ajmg.a.33445. PMID 20803646.
  177. 177.0 177.1 Zawawi F, Sokolov M, Mawby T, Gordon KA, Papsin BC, Cushing SL (May 2018). "Emberger syndrome: A rare association with hearing loss". Int. J. Pediatr. Otorhinolaryngol. 108: 82–84. doi:10.1016/j.ijporl.2018.02.014. PMID 29605372.
  178. Hsu AP, McReynolds LJ, Holland SM (February 2015). "GATA2 deficiency". Curr Opin Allergy Clin Immunol. 15 (1): 104–9. doi:10.1097/ACI.0000000000000126. PMC 4342850. PMID 25397911.
  179. Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, McGovern N, Cookson S, Ferozepurwalla Z, Langridge A, Pagan S, Gennery A, Heiskanen-Kosma T, Hämäläinen S, Seppänen M, Helbert M, Tholouli E, Gambineri E, Reykdal S, Gottfreðsson M, Thaventhiran JE, Morris E, Hirschfield G, Richter AG, Jolles S, Bacon CM, Hambleton S, Haniffa M, Bryceson Y, Allen C, Prchal JT, Dick JE, Bigley V, Collin M (February 2014). "The evolution of cellular deficiency in GATA2 mutation". Blood. 123 (6): 863–74. doi:10.1182/blood-2013-07-517151. PMC 3916878. PMID 24345756.
  180. Hirabayashi S, Wlodarski MW, Kozyra E, Niemeyer CM (August 2017). "Heterogeneity of GATA2-related myeloid neoplasms". Int. J. Hematol. 106 (2): 175–182. doi:10.1007/s12185-017-2285-2. PMID 28643018.
  181. Crispino JD, Horwitz MS (April 2017). "GATA factor mutations in hematologic disease". Blood. 129 (15): 2103–2110. doi:10.1182/blood-2016-09-687889. PMC 5391620. PMID 28179280.
  182. 182.0 182.1 182.2 Frosk P, Chodirker B, Simard L, El-Matary W, Hanlon-Dearman A, Schwartzentruber J, Majewski J, Rockman-Greenberg C (April 2015). "A novel CCBE1 mutation leading to a mild form of hennekam syndrome: case report and review of the literature". BMC Med. Genet. 16: 28. doi:10.1186/s12881-015-0175-0. PMC 4630843. PMID 25925991.
  183. Van Balkom ID, Alders M, Allanson J, Bellini C, Frank U, De Jong G, Kolbe I, Lacombe D, Rockson S, Rowe P, Wijburg F, Hennekam RC (November 2002). "Lymphedema-lymphangiectasia-mental retardation (Hennekam) syndrome: a review". Am. J. Med. Genet. 112 (4): 412–21. doi:10.1002/ajmg.10707. PMID 12376947.
  184. 184.0 184.1 184.2 Deng XL, Yin F, Zhang GY, Duan YD (January 2015). "[A complicated case study: Hennekam syndrome]". Zhongguo Dang Dai Er Ke Za Zhi (in Chinese). 17 (1): 77–80. PMID 25616299.
  185. Roukens MG, Peterson-Maduro J, Padberg Y, Jeltsch M, Leppänen VM, Bos FL, Alitalo K, Schulte-Merker S, Schulte D (May 2015). "Functional Dissection of the CCBE1 Protein: A Crucial Requirement for the Collagen Repeat Domain". Circ. Res. 116 (10): 1660–9. doi:10.1161/CIRCRESAHA.116.304949. PMID 25814692.
  186. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (May 2014). "CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation". Circulation. 129 (19): 1962–71. doi:10.1161/CIRCULATIONAHA.113.002779. PMID 24552833.
  187. 187.0 187.1 Lee YG, Kim SC, Park SB, Kim MJ (February 2018). "Hennekam Syndrome: A Case Report". Ann Rehabil Med. 42 (1): 184–188. doi:10.5535/arm.2018.42.1.184. PMC 5852224. PMID 29560340.
  188. 188.0 188.1 Schlögel MJ, Mendola A, Fastré E, Vasudevan P, Devriendt K, de Ravel TJ, Van Esch H, Casteels I, Arroyo Carrera I, Cristofoli F, Fieggen K, Jones K, Lipson M, Balikova I, Singer A, Soller M, Mercedes Villanueva M, Revencu N, Boon LM, Brouillard P, Vikkula M (May 2015). "No evidence of locus heterogeneity in familial microcephaly with or without chorioretinopathy, lymphedema, or mental retardation syndrome". Orphanet J Rare Dis. 10: 52. doi:10.1186/s13023-015-0271-4. PMC 4464120. PMID 25934493.
  189. McKusick VA, Stauffer M, Knox DL, Clark DB (May 1966). "Chorioretinopathy with hereditary microcephaly". Arch. Ophthalmol. 75 (5): 597–600. PMID 5936364.
  190. Vasudevan PC, Garcia-Minaur S, Botella MP, Perez-Aytes A, Shannon NL, Quarrell OW (July 2005). "Microcephaly-lymphoedema-chorioretinal dysplasia: three cases to delineate the facial phenotype and review of the literature". Clin. Dysmorphol. 14 (3): 109–16. PMID 15930898.
  191. 191.0 191.1 Eventov-Friedman S, Singer A, Shinwell ES (April 2009). "Microcephaly, lymphedema, chorioretinopathy and atrial septal defect: a case report and review of the literature". Acta Paediatr. 98 (4): 758–9. doi:10.1111/j.1651-2227.2008.01161.x. PMID 19076985.
  192. Mirzaa GM, Enyedi L, Parsons G, Collins S, Medne L, Adams C, Ward T, Davitt B, Bicknese A, Zackai E, Toriello H, Dobyns WB, Christian S (November 2014). "Congenital microcephaly and chorioretinopathy due to de novo heterozygous KIF11 mutations: five novel mutations and review of the literature". Am. J. Med. Genet. A. 164A (11): 2879–86. doi:10.1002/ajmg.a.36707. PMC 4205200. PMID 25115524.
  193. Mears K, Bakall B, Harney LA, Penticoff JA, Stone EM (June 2015). "Autosomal Dominant Microcephaly Associated With Congenital Lymphedema and Chorioretinopathy Due to a Novel Mutation in KIF11". JAMA Ophthalmol. 133 (6): 720–1. doi:10.1001/jamaophthalmol.2015.199. PMID 25764055.
  194. Hu H, Xiao X, Li S, Jia X, Guo X, Zhang Q (February 2016). "KIF11 mutations are a common cause of autosomal dominant familial exudative vitreoretinopathy". Br J Ophthalmol. 100 (2): 278–83. doi:10.1136/bjophthalmol-2015-306878. PMID 26472404.
  195. Balikova I, Robson AG, Holder GE, Ostergaard P, Mansour S, Moore AT (February 2016). "Ocular manifestations of microcephaly with or without chorioretinopathy, lymphedema or intellectual disability (MCLID) syndrome associated with mutations in KIF11". Acta Ophthalmol. 94 (1): 92–8. doi:10.1111/aos.12759. PMID 25996076.
  196. 196.0 196.1 Jones GE, Ostergaard P, Moore AT, Connell FC, Williams D, Quarrell O, Brady AF, Spier I, Hazan F, Moldovan O, Wieczorek D, Mikat B, Petit F, Coubes C, Saul RA, Brice G, Gordon K, Jeffery S, Mortimer PS, Vasudevan PC, Mansour S (July 2014). "Microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR): review of phenotype associated with KIF11 mutations". Eur. J. Hum. Genet. 22 (7): 881–7. doi:10.1038/ejhg.2013.263. PMC 3938398. PMID 24281367.
  197. 197.0 197.1 Au AC, Hernandez PA, Lieber E, Nadroo AM, Shen YM, Kelley KA, Gelb BD, Diaz GA (September 2010). "Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans". Am. J. Hum. Genet. 87 (3): 436–44. doi:10.1016/j.ajhg.2010.08.008. PMC 2933336. PMID 20826270.
  198. 198.0 198.1 Nätynki M, Kangas J, Miinalainen I, Sormunen R, Pietilä R, Soblet J, Boon LM, Vikkula M, Limaye N, Eklund L (November 2015). "Common and specific effects of TIE2 mutations causing venous malformations". Hum. Mol. Genet. 24 (22): 6374–89. doi:10.1093/hmg/ddv349. PMC 4614705. PMID 26319232.
  199. 199.0 199.1 199.2 Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VE, Chivite I, Milà-Guasch M, Pearce W, Solomon I, Angulo-Urarte A, Figueiredo AM, Dewhurst RE, Knox RG, Clark GR, Scudamore CL, Badar A, Kalber TL, Foster J, Stuckey DJ, David AL, Phillips WA, Lythgoe MF, Wilson V, Semple RK, Sebire NJ, Kinsler VA, Graupera M, Vanhaesebroeck B (March 2016). "Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans". Sci Transl Med. 8 (332): 332ra43. doi:10.1126/scitranslmed.aad9982. PMC 5973268. PMID 27030595.
  200. 200.0 200.1 Limaye N, Kangas J, Mendola A, Godfraind C, Schlögel MJ, Helaers R, Eklund L, Boon LM, Vikkula M (December 2015). "Somatic Activating PIK3CA Mutations Cause Venous Malformation". Am. J. Hum. Genet. 97 (6): 914–21. doi:10.1016/j.ajhg.2015.11.011. PMC 4678782. PMID 26637981.
  201. 201.0 201.1 Brahami N, Subramaniam S, Al-Ddafari MS, Elkaim C, Harmand PO, Sari BE, Lefranc G, Aribi M (March 2017). "Facial cutaneo-mucosal venous malformations can develop independently of mutation of TEK gene but may be associated with excessive expression of Src and p-Src". J Negat Results Biomed. 16 (1): 9. doi:10.1186/s12952-017-0072-5. PMC 5357811. PMID 28316284.
  202. Wouters V, Limaye N, Uebelhoer M, Irrthum A, Boon LM, Mulliken JB, Enjolras O, Baselga E, Berg J, Dompmartin A, Ivarsson SA, Kangesu L, Lacassie Y, Murphy J, Teebi AS, Penington A, Rieu P, Vikkula M (April 2010). "Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects". Eur. J. Hum. Genet. 18 (4): 414–20. doi:10.1038/ejhg.2009.193. PMC 2841708. PMID 19888299.
  203. 203.0 203.1 El Bakkaly A, Ettayebi F, Oubeja H, Erraji M, Zerhouni H (2017). "[Bean's syndrome in children: about two cases]". Pan Afr Med J (in French). 28: 102. doi:10.11604/pamj.2017.28.102.11109. PMC 5837144. PMID 29515720.
  204. 204.0 204.1 204.2 Soblet J, Kangas J, Nätynki M, Mendola A, Helaers R, Uebelhoer M, Kaakinen M, Cordisco M, Dompmartin A, Enjolras O, Holden S, Irvine AD, Kangesu L, Léauté-Labrèze C, Lanoel A, Lokmic Z, Maas S, McAleer MA, Penington A, Rieu P, Syed S, van der Vleuten C, Watson R, Fishman SJ, Mulliken JB, Eklund L, Limaye N, Boon LM, Vikkula M (January 2017). "Blue Rubber Bleb Nevus (BRBN) Syndrome Is Caused by Somatic TEK (TIE2) Mutations". J. Invest. Dermatol. 137 (1): 207–216. doi:10.1016/j.jid.2016.07.034. PMID 27519652.
  205. 205.0 205.1 Akutko K, Krzesiek E, Iwańczak B (October 2012). "[Blue rubber bleb naevus syndrome]". Pol. Merkur. Lekarski (in Polish). 33 (196): 226–8. PMID 23272612.
  206. Jeltsch M, Leppänen VM, Saharinen P, Alitalo K (September 2013). "Receptor tyrosine kinase-mediated angiogenesis". Cold Spring Harb Perspect Biol. 5 (9). doi:10.1101/cshperspect.a009183. PMC 3753715. PMID 24003209.
  207. Gawlikowska-Sroka A, Glura B, Mokrzycka M, Ociepa T (2016). "[Bean Syndrome (blue rubber bleb nevus syndrome)]". Pomeranian J Life Sci (in Polish). 62 (2): 5–7. PMID 29537205.
  208. Lindsey SF, Reiders B, Mechaber HF (2013). "Life-threatening pharyngeal edema after sclerotherapy of oral venous malformations in a patient with blue rubber bleb nevus syndrome". J Dermatol Case Rep. 7 (3): 74–6. doi:10.3315/jdcr.2013.1145. PMC 3797012. PMID 24133559.
  209. 209.0 209.1 Wortsman X, Millard F, Aranibar L (April 2018). "Color Doppler Ultrasound Study of Glomuvenous Malformations with its Clinical and Histologic Correlations". Actas Dermosifiliogr. 109 (3): e17–e21. doi:10.1016/j.ad.2017.04.013. PMID 28683898.
  210. 210.0 210.1 Jha A, Khunger N, Malarvizhi K, Ramesh V, Singh A (2016). "Familial Disseminated Cutaneous Glomuvenous Malformation: Treatment with Polidocanol Sclerotherapy". J Cutan Aesthet Surg. 9 (4): 266–269. doi:10.4103/0974-2077.197083. PMC 5227083. PMID 28163461.
  211. 211.0 211.1 Whipple KM, Godfrey KJ, Solomon JP, Lin JH, Korn BS, Kikkawa DO (2017). "Glomuvenous Malformation: A Rare Periorbital Lesion of the Thermoregulatory Apparatus". Ophthalmic Plast Reconstr Surg. 33 (2): e36–e37. doi:10.1097/IOP.0000000000000695. PMC 5118188. PMID 27065433.
  212. Jha A, Ramesh V, Singh A (2014). "Disseminated cutaneous glomuvenous malformation". Indian J Dermatol Venereol Leprol. 80 (6): 556–8. doi:10.4103/0378-6323.144200. PMID 25382523.
  213. Borroni RG, Grassi S, Concardi M, Puccio I, Giordano C, Agozzino M, Caspani C, Grasso M, Diegoli M, Arbustini E (March 2014). "Glomuvenous malformations with smooth muscle and eccrine glands: unusual histopathologic features in a familial setting". J. Cutan. Pathol. 41 (3): 308–15. doi:10.1111/cup.12283. PMID 24345188.
  214. Brouillard P, Boon LM, Revencu N, Berg J, Dompmartin A, Dubois J, Garzon M, Holden S, Kangesu L, Labrèze C, Lynch SA, McKeown C, Meskauskas R, Quere I, Syed S, Vabres P, Wassef M, Mulliken JB, Vikkula M (April 2013). "Genotypes and phenotypes of 162 families with a glomulin mutation". Mol Syndromol. 4 (4): 157–64. doi:10.1159/000348675. PMC 3666456. PMID 23801931.
  215. Tron AE, Arai T, Duda DM, Kuwabara H, Olszewski JL, Fujiwara Y, Bahamon BN, Signoretti S, Schulman BA, DeCaprio JA (April 2012). "The glomuvenous malformation protein Glomulin binds Rbx1 and regulates cullin RING ligase-mediated turnover of Fbw7". Mol. Cell. 46 (1): 67–78. doi:10.1016/j.molcel.2012.02.005. PMC 3336104. PMID 22405651.
  216. Brouillard P, Ghassibé M, Penington A, Boon LM, Dompmartin A, Temple IK, Cordisco M, Adams D, Piette F, Harper JI, Syed S, Boralevi F, Taïeb A, Danda S, Baselga E, Enjolras O, Mulliken JB, Vikkula M (February 2005). "Four common glomulin mutations cause two thirds of glomuvenous malformations ("familial glomangiomas"): evidence for a founder effect". J. Med. Genet. 42 (2): e13. doi:10.1136/jmg.2004.024174. PMC 1735996. PMID 15689436.
  217. Rivers JK, Rivers CA, Li MK, Martinka M (January 2016). "Laser Therapy for an Acquired Glomuvenous Malformation (Glomus Tumour): A Nonsurgical Approach". J Cutan Med Surg. 20 (1): 80–3. doi:10.1177/1203475415596121. PMID 26177926.
  218. Phillips CB, Guerrero C, Theos A (April 2015). "Nd:YAG laser offers promising treatment option for familial glomuvenous malformation". Dermatol. Online J. 21 (4). PMID 25933083.
  219. Flors L, Norton PT, Hagspiel KD (February 2015). "Glomuvenous malformation: magnetic resonance imaging findings". Pediatr Radiol. 45 (2): 286–90. doi:10.1007/s00247-014-3086-x. PMID 24996811.
  220. Henning JS, Kovich OI, Schaffer JV (January 2007). "Glomuvenous malformations". Dermatol. Online J. 13 (1): 17. PMID 17511950.
  221. 221.0 221.1 Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (February 2014). "Cerebral cavernous malformation proteins at a glance". J. Cell. Sci. 127 (Pt 4): 701–7. doi:10.1242/jcs.138388. PMC 3924200. PMID 24481819.
  222. 222.0 222.1 222.2 Zyck S, Gould GC. PMID 30252265. Missing or empty |title= (help)
  223. Trapani E, Retta SF (September 2015). "Cerebral cavernous malformation (CCM) disease: from monogenic forms to genetic susceptibility factors". J Neurosurg Sci. 59 (3): 201–9. PMID 25896717.
  224. Wang Y, Li Y, Zou J, Polster SP, Lightle R, Moore T, Dimaano M, He TC, Weber CR, Awad IA, Shen L (September 2018). "The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation". FASEB J.: fj201800343R. doi:10.1096/fj.201800343R. PMID 30252535.
  225. Nardella G, Visci G, Guarnieri V, Castellana S, Biagini T, Bisceglia L, Palumbo O, Trivisano M, Vaira C, Scerrati M, Debrasi D, D'Angelo V, Carella M, Merla G, Mazza T, Castori M, D'Agruma L, Fusco C (August 2018). "A single-center study on 140 patients with cerebral cavernous malformations: 28 new pathogenic variants and functional characterization of a PDCD10 large deletion". Hum. Mutat. doi:10.1002/humu.23629. PMID 30161288.
  226. Mouchtouris N, Chalouhi N, Chitale A, Starke RM, Tjoumakaris SI, Rosenwasser RH, Jabbour PM (2015). "Management of cerebral cavernous malformations: from diagnosis to treatment". ScientificWorldJournal. 2015: 808314. doi:10.1155/2015/808314. PMC 4300037. PMID 25629087.
  227. Kim J (May 2016). "Introduction to cerebral cavernous malformation: a brief review". BMB Rep. 49 (5): 255–62. PMC 5070704. PMID 26923303.
  228. Wurm G, Schnizer M, Fellner FA (July 2005). "Cerebral cavernous malformations associated with venous anomalies: surgical considerations". Neurosurgery. 57 (1 Suppl): 42–58, discussion 42–58. PMID 15987569.
  229. Washington CW, McCoy KE, Zipfel GJ (September 2010). "Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation". Neurosurg Focus. 29 (3): E7. doi:10.3171/2010.5.FOCUS10149. PMID 20809765.
  230. 230.0 230.1 230.2 Cetinkaya A, Xiong JR, Vargel İ, Kösemehmetoğlu K, Canter Hİ, Gerdan ÖF, Longo N, Alzahrani A, Camps MP, Taskiran EZ, Laupheimer S, Botto LD, Paramalingam E, Gormez Z, Uz E, Yuksel B, Ruacan Ş, Sağıroğlu MŞ, Takahashi T, Reversade B, Akarsu NA (August 2016). "Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling". Am. J. Hum. Genet. 99 (2): 299–317. doi:10.1016/j.ajhg.2016.06.008. PMC 4974086. PMID 27476657.
  231. Vargel I, Cil BE, Er N, Ruacan S, Akarsu AN, Erk Y (April 2002). "Hereditary intraosseous vascular malformation of the craniofacial region: an apparently novel disorder". Am. J. Med. Genet. 109 (1): 22–35. PMID 11932989.
  232. 232.0 232.1 Handa H, Naidu GS, Dara BG, Deshpande A, Raghavendra R (March 2014). "Diverse imaging characteristics of a mandibular intraosseous vascular lesion". Imaging Sci Dent. 44 (1): 67–73. doi:10.5624/isd.2014.44.1.67. PMC 3972408. PMID 24701461.
  233. Peotter JL, Phillips J, Tong T, Dimeo K, Gonzalez JM, Peters DM (October 2016). "Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells". Exp. Cell Res. 347 (2): 301–11. doi:10.1016/j.yexcr.2016.08.009. PMC 5333770. PMID 27539661.
  234. Cariati P, Marín-Fernández AB, Julia-Martínez MÁ, Pérez-de Perceval-Tara M, Sánchez-López D, Martínez-Lara I (February 2018). "Endovascular treatment of an intraosseous arteriovenous malformation of the mandible in a child. A case Report". J Clin Exp Dent. 10 (2): e189–e191. doi:10.4317/jced.54550. PMC 5899801. PMID 29670739.
  235. 235.0 235.1 Singh J, Sharma P, Tandon S, Sinha S (2017). "Multiple Verrucous Hemangiomas: A Case Report with New Therapeutic Insight". Indian Dermatol Online J. 8 (4): 254–256. doi:10.4103/idoj.IDOJ_313_16. PMC 5518576. PMID 28761841.
  236. 236.0 236.1 Oppermann K, Boff AL, Bonamigo RR (2018). "Verrucous hemangioma and histopathological differential diagnosis with angiokeratoma circumscriptum neviforme". An Bras Dermatol. 93 (5): 712–715. doi:10.1590/abd1806-4841.20187259. PMC 6106676. PMID 30156622.
  237. Couto JA, Vivero MP, Kozakewich HP, Taghinia AH, Mulliken JB, Warman ML, Greene AK (March 2015). "A somatic MAP3K3 mutation is associated with verrucous venous malformation". Am. J. Hum. Genet. 96 (3): 480–6. doi:10.1016/j.ajhg.2015.01.007. PMC 4375628. PMID 25728774.
  238. Zhang G, Chen H, Zhen Z, Chen J, Zhang S, Qin Q, Liu X (July 2018). "Sirolimus for treatment of verrucous venous malformation: A retrospective cohort study". J. Am. Acad. Dermatol. doi:10.1016/j.jaad.2018.07.014. PMID 30048660.