Sandbox : anmol

Revision as of 14:29, 8 September 2017 by Anmol Pitliya (talk | contribs) (→‎SPECT)
Jump to navigation Jump to search

Hyperparathyroidism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hyperparathyroidism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Sandbox : anmol On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Sandbox : anmol

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Sandbox : anmol

CDC on Sandbox : anmol

Sandbox : anmol in the news

Blogs on Sandbox : anmol

Directions to Hospitals Treating Hyperparathyroidism

Risk calculators and risk factors for Sandbox : anmol

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Anmol Pitliya, M.B.B.S. M.D.[2]

Classification

Classification of hyperparathyridism
Features Primary hyperparathyroidism Secondary hyperparathyroidism Tertiary hyperparathyroidism
Pathology Hyperfunction of parathyroid cells due to hyperplasia, adenoma or carcinoma. Physiological stimulation of parathyroid in response to hypocalcaemia. Following long term physiological stimulation leading to hyperplasia.
Cause
Associations May be associated with multiple endocrine neoplasia. Usually due to chronic renal failure or other causes of Vitamin D deficiency. Seen in chronic renal failure.
Serum calcium High Low/Normal High
Serum phosphate Low/Normal High High
Management Usually surgery if symptomatic. Cincacalcet can be considered in those not fit for surgery. Treatment of underlying cause. Usually cinacalcet or surgery in those that don't respond.

Causes

Genetic causes

  • HRPT2 gene mutations:[1]
    • HRPT2 gene code for parafibromin protein.
    • HRPT2 gene mutations are found in a type of familial hyperparathyroidism, hyperparathyroidism-jaw tumor (HPT-JT) syndrome.
    • HRTP2 gene mutations increases risk of parathyroid carcinoma.
  • Cyclin D1 gene (CCND1)/PRAD1 gene:[2][3]
    • PRAD1 (parathyroid adenoma 1) is a protooncogene located on chromosome 11q13.
    • Cyclin D1 gene translocation and oncogene action observerd in 8% of adenomas
    • Cyclin D1 gene overexpression is pbserved in 20% to 40% of parathyroid adenomas
  • MEN1 gene:[2][4]
    • MEN1 is a tumor supressor gene on chronosome 11q13.
    • Somatic loss of single MEN1 allele is observed in 25% to 40% of sporadic parathyroid adenomas.

Pathogenesis

Associated conditions

ECG

X-ray

CT scan

MRI

Ultrasound

TC-99m Sestamibi Scintigraphy

SPECT

PET

  • 11C-methionine PET along with CT scan (MET-PET/CT) may be used for preoperative localization of hyper-functioning gland.[5][6]
  • MET-PET/CT may be used as an complimentary imaging modality for localizing hyper-functioning parathyroid glands in patients with negative Tc-99m sestamibi scintigraphy/SPECT results.[7]

DXA

  • Low bone mineral density (BMD) is caused by primary hyperparathyroidism. Distal forearm is affected most commonly.
  • DXA of distal forearm should be done in all patients of primary hyperparathyroidism. Worst T-score of distal forearm is observed in patients with primary hyperparathyroidism.[8]

Other diagnostic studies

Intraoperative parathyroid hormone (IOPTH)

  • Measurement of intraoperative parathyroid hormone (IOPTH) by using a modified sensitive assay (immunoradiometric assay) is beneficial for long term surgical outcomes.Post-surgical success is defined as postoperative normocalcemia.
  • Patients with hyperparathyroidism due to lesion in a single gland shows a rapid decline of intact parathyroid hormone. The levels of intact parathyroid hormone reached to indetectable levels within hours of resection.[9]
  • After resection of parathyroid adenoma, intact parathyroid hormone levels decrease by 85% is observed in first 15 minutes. This fall in parathyroid hormone levels is due to short half-life of parathyroid hormone.[10]
  • The fall in parathyroid hormone level is significantly more after resection of parathyroid adenoma than after resection of parathyroid hyperplasia.
  • A fall in level of parathyroid hormone 15 minutes after resection of hyper-functioning parathyroid glands may help differentiating sigle gland disease from multi gland disease.[11][12]
  • IOPTH monitoring has a predictive accuracy of 97%. [13]

Technique for intraoperative parathyroid hormone (IOPTH) monitoring

  • When the enlarged parathyroid gland is first visualized intraoperatively, the baseline sample should be obtained.[14]
  • The baseline samples should never be obtained before induction of anesthesia. It is due to the fact that an increase in parathyroid hormone level may be observed after general anesthesia.
  • After excision of enlarged gland, 2nd and 3rd samples are collected at 5 and 10 minutes respectively.
  • Several criteria are used for predicting post-operative normocalcemia including:
    • A decline in parathyroid hormone levels of ≥60% from baseline value at 15 minutes.
    • A decline in parathyroid hormone levels of ≥50% from baseline value at 10 minutes.

Super Selective Venous Sampling

Selective arteriography

  • Selective transarterial hypocalcemic stimulation is combined with nonselective venous sampling to perform selective arteriography.[15]
  • Sodium citrate is injected to induce hypocalcemia. Simultaneous arteriography is performed.
  • Samples are taken for superior vena cava at basaeline and timed intervals (20 sec, 40 sec, and 60 sec).
  • An increase in the parathyroid hormone level to 1.4 times above the baseline or a clear blush observed on arteriography is considered as positive localization.
  • Arterial stimulation venous sampling is performed simultaneously with arteriogram due to similarly high PPV.

Angiography

  • Superselective arterial digital subtraction angiography (DSA) and superselective conventional angiography (CA) may be used for preoperative localization of hyper-functioning parathyroid glands in which noninvasive imaging modalities are negative or inconclusive.[16]
  • Sensitivity of superselective digital subtraction angiography appears to be similar to conventional angiography.
  • Superselective arterial digital subtraction angiography may be more sensitive than conventional angiography for preoperative localization of mediastinal hyper-functioning parathyroid glands.

References

  1. Shattuck TM, Välimäki S, Obara T, Gaz RD, Clark OH, Shoback D; et al. (2003). "Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma". N Engl J Med. 349 (18): 1722–9. doi:10.1056/NEJMoa031237. PMID 14585940.
  2. 2.0 2.1 Westin G, Björklund P, Akerström G (2009). "Molecular genetics of parathyroid disease". World J Surg. 33 (11): 2224–33. doi:10.1007/s00268-009-0022-6. PMID 19373510.
  3. Hsi ED, Zukerberg LR, Yang WI, Arnold A (1996). "Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study". J Clin Endocrinol Metab. 81 (5): 1736–9. doi:10.1210/jcem.81.5.8626826. PMID 8626826.
  4. Agarwal SK, Kester MB, Debelenko LV, Heppner C, Emmert-Buck MR, Skarulis MC; et al. (1997). "Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states". Hum Mol Genet. 6 (7): 1169–75. PMID 9215689.
  5. Tang BN, Moreno-Reyes R, Blocklet D, Corvilain B, Cappello M, Delpierre I; et al. (2008). "Accurate pre-operative localization of pathological parathyroid glands using 11C-methionine PET/CT". Contrast Media Mol Imaging. 3 (4): 157–63. doi:10.1002/cmmi.243. PMID 18781582.
  6. Weber T, Maier-Funk C, Ohlhauser D, Hillenbrand A, Cammerer G, Barth TF; et al. (2013). "Accurate preoperative localization of parathyroid adenomas with C-11 methionine PET/CT". Ann Surg. 257 (6): 1124–8. doi:10.1097/SLA.0b013e318289b345. PMID 23478517.
  7. Traub-Weidinger T, Mayerhoefer ME, Koperek O, Mitterhauser M, Duan H, Karanikas G; et al. (2014). "11C-methionine PET/CT imaging of 99mTc-MIBI-SPECT/CT-negative patients with primary hyperparathyroidism and previous neck surgery". J Clin Endocrinol Metab. 99 (11): 4199–205. doi:10.1210/jc.2014-1267. PMID 25029418.
  8. Wood K, Dhital S, Chen H, Sippel RS (2012). "What is the utility of distal forearm DXA in primary hyperparathyroidism?". Oncologist. 17 (3): 322–5. doi:10.1634/theoncologist.2011-0285. PMC 3316917. PMID 22258698.
  9. Nussbaum SR, Thompson AR, Hutcheson KA, Gaz RD, Wang CA (1988). "Intraoperative measurement of parathyroid hormone in the surgical management of hyperparathyroidism". Surgery. 104 (6): 1121–7. PMID 3194839.
  10. Bergenfelz A, Isaksson A, Ahrén B (1994). "Intraoperative monitoring of intact PTH during surgery for primary hyperparathyroidism". Langenbecks Arch Chir. 379 (1): 50–3. PMID 8145618.
  11. Irvin III, George L.; Dembrow, Victor D.; Prudhomme, David L. (December 1993). "Clinical usefulness of an intraoperative "quick parathyroid hormone" assay". Surgery. 114 (6): 1019–1023.
  12. Bergenfelz A, Isaksson A, Lindblom P, Westerdahl J, Tibblin S (1998). "Measurement of parathyroid hormone in patients with primary hyperparathyroidism undergoing first and reoperative surgery". Br J Surg. 85 (8): 1129–32. doi:10.1046/j.1365-2168.1998.00824.x. PMID 9718013.
  13. Boggs JE, Irvin GL, Molinari AS, Deriso GT (1996). "Intraoperative parathyroid hormone monitoring as an adjunct to parathyroidectomy" (PDF). Surgery. 120 (6): 954–8. doi:10.1016/S0039-6060(96)80040-7. PMID 8957480.
  14. Westerdahl J, Lindblom P, Bergenfelz A (2002). "Measurement of intraoperative parathyroid hormone predicts long-term operative success". Arch Surg. 137 (2): 186–90. doi:10.1001/archsurg.137.2.186. PMID 11822958.
  15. Powell AC, Alexander HR, Chang R, Marx SJ, Skarulis M, Pingpank JF; et al. (2009). "Reoperation for parathyroid adenoma: a contemporary experience". Surgery. 146 (6): 1144–55. doi:10.1016/j.surg.2009.09.015. PMC 3467310. PMID 19958942.
  16. Miller DL, Chang R, Doppman JL, Norton JA (1989). "Localization of parathyroid adenomas: superselective arterial DSA versus superselective conventional angiography". Radiology. 170 (3 Pt 2): 1003–6. doi:10.1148/radiology.170.3.2644666. PMID 2644666.