Pure red cell aplasia: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 13: Line 13:
}}
}}
{{SI}}
{{SI}}
{{CMG}}{{AE}}{{MA}}
{{CMG}} {{shyam}} {{AE}}{{MA}}


{{SK}} Pure red cell aplasia; Erythroblastopenia.
{{SK}} Pure red cell aplasia; Erythroblastopenia.
Line 21: Line 21:


==Overview==
==Overview==
Pure red cell aplasia was first discovered by Paul Kaznelson in 1922. Pure red cell aplasia may be classified into primary ([[idiopathic]]) PRCA and [[acquired]] red cell aplasia. It is thought that acquired pure red cell aplasia is the result of profound [[anemia]] due to severe reduction in number of [[RBC]] in [[peripheral blood]] and absence of [[erythroid]] precursors, [[proerythroblast]] in the [[bone marrow]].  Causes include [[autoimmune disease]], [[thymoma]], [[viral]] infections, [[lymphoproliferative disorders]], [[idiopathic]], [[drugs]], [[ABO blood group system|ABO]]- incompatible [[hematopoietic cell]] [[transplantation]], Anti- [[erythropoietin]] antibodies. Pure red cell aplasia must be differentiated from [[Transient erythroblastopenia of childhood]], [[Diamond-Blackfan anemia]] (DBA) and [[Aplastic anemia]]. The [[incidence]] of Diamond-Blackfan anemia (DBA) is approximately 6.6 per 100,000 individuals in Erope. Pure red cell aplasia due to [[Diamond-Blackfan anemia]] ([[DBA]])affects men and women equally. Common risk factor in the development of pure red cell aplasia include strong [[family history]]. If left untreated, 14% of patients with pure red cell aplasia may have spontaneously remitting disease. Pure red cell aplasia due to [[parvovirus]] infection usually resolve within 2-3 weeks. Common complications of pure red cell aplasia include [[infection]] due to side effects of some treatments. Prognosis is generally good. Diagnostic study of choice include [[complete blood count]], [[peripheral smear]], [[reticulocyte count]], [[hepatic function test]], [[Renal function tests|renal function test]], [[bone marrow aspiration]] and [[biopsy]]. Common symptoms of pure red cell aplasia include [[fatigue]] and [[lethargy]]. Laboratory findings consistent with the diagnosis of pure red cell aplasia include [[Normocytic anemia|normocytic]], [[Normochromic anemia|normochromic]] [[anemia]], very low or zero [[reticulocyte]] percentage and an [[absolute reticulocyte count]] <10,000/microL, normal [[White blood cells|white blood cell]] and [[platelets]]. An [[x-ray]] may be helpful in the diagnosis of [[thymoma]] and other [[Neoplasm|neoplasms]]. Medical therapy include [[red blood cell]] [[Blood transfusion|transfusion]] in symptomatic [[anemia]], cessation of offending drugs, Intravenous [[immune globulin]] ([[Intravenous immunoglobulin|IVIG]]) in resistant pure red cell aplasia, [[Immunosuppressive therapy]] in [[idiopathic]] pure red cell aplasia. Surgery is usually reserved for patients with [[thymoma]].  
Pure red cell aplasia was first discovered by Paul Kaznelson in 1922. Pure red cell aplasia may be classified into primary ([[idiopathic]]) PRCA and [[acquired]] red cell aplasia. It is thought that acquired pure red cell aplasia is the result of profound [[anemia]] due to severe reduction in number of [[RBC]] in [[peripheral blood]] and absence of [[erythroid]] precursors, [[proerythroblast]] in the [[bone marrow]].  Causes include [[autoimmune disease]], [[thymoma]], [[viral]] infections, [[lymphoproliferative disorders]], [[idiopathic]], [[drugs]], [[ABO blood group system|ABO]]- incompatible [[hematopoietic cell]] [[transplantation]], Anti- [[erythropoietin]] antibodies. Pure red cell aplasia must be differentiated from [[transient erythroblastopenia of childhood]], [[Diamond-Blackfan anemia]] (DBA) and [[aplastic anemia]]. The [[incidence]] of Diamond-Blackfan anemia (DBA) is approximately 6.6 per 100,000 individuals in Europe. Pure red cell aplasia due to [[Diamond-Blackfan anemia]] ([[DBA]]) affects men and women equally. Common risk factor in the development of pure red cell aplasia include strong [[family history]]. If left untreated, 14% of patients with pure red cell aplasia may have spontaneously remitting disease. Pure red cell aplasia due to [[parvovirus]] infection usually resolve within 2-3 weeks. Common complications of pure red cell aplasia include [[infection]] due to side effects of some treatments. Prognosis is generally good. Diagnostic study of choice include [[complete blood count]], [[peripheral smear]], [[reticulocyte count]], [[hepatic function test]], [[renal function tests|renal function test]], [[bone marrow aspiration]] and [[biopsy]]. Common symptoms of pure red cell aplasia include [[fatigue]] and [[lethargy]]. Laboratory findings consistent with the diagnosis of pure red cell aplasia include [[Normocytic anemia|normocytic]], [[Normochromic anemia|normochromic]] [[anemia]], very low or zero [[reticulocyte]] percentage and an [[absolute reticulocyte count]] <10,000/microL, normal [[White blood cells|white blood cell]] and [[platelets]]. An [[x-ray]] may be helpful in the diagnosis of [[thymoma]] and other [[Neoplasm|neoplasms]]. Medical therapy include [[red blood cell]] [[Blood transfusion|transfusion]] in symptomatic [[anemia]], cessation of offending drugs, Intravenous [[immune globulin]] ([[Intravenous immunoglobulin|IVIG]]) in resistant pure red cell aplasia, [[Immunosuppressive therapy]] in [[idiopathic]] pure red cell aplasia. Surgery is usually reserved for patients with [[thymoma]].  


==Historical Perspective==
==Historical Perspective==
Line 32: Line 32:
==Pathophysiology==
==Pathophysiology==
* It is thought that acquired pure red cell aplasia is the result of profound [[anemia]] due to severe reduction in number of RBC in peripheral blood and absence of [[erythroid]] precursors, [[proerythroblast]] in the [[bone marrow]].
* It is thought that acquired pure red cell aplasia is the result of profound [[anemia]] due to severe reduction in number of RBC in peripheral blood and absence of [[erythroid]] precursors, [[proerythroblast]] in the [[bone marrow]].
* The numbers of [[white blood cells]] and [[platelets]] are normal.<ref name="pmid17591682">{{cite journal |vauthors=Dessypris EN |title=The biology of pure red cell aplasia |journal=Semin. Hematol. |volume=28 |issue=4 |pages=275–84 |date=October 1991 |pmid=1759168 |doi= |url=}}</ref>  
* The numbers of [[white blood cells]] and [[platelets]] are normal.<ref name="pmid17591682">{{cite journal |vauthors=Dessypris EN |title=The biology of pure red cell aplasia |journal=Semin. Hematol. |volume=28 |issue=4 |pages=275–84 |date=October 1991 |pmid=1759168 |doi= |url=}}</ref>  
* In [[autoimmune disorders]], IgG fraction in serum inhibit the growth of normal erythroid progenitors.<ref name="pmid17591683">{{cite journal |vauthors=Dessypris EN |title=The biology of pure red cell aplasia |journal=Semin. Hematol. |volume=28 |issue=4 |pages=275–84 |date=October 1991 |pmid=1759168 |doi= |url=}}</ref>  
* In [[autoimmune disorders]], IgG fraction in serum inhibit the growth of normal erythroid progenitors.<ref name="pmid17591683">{{cite journal |vauthors=Dessypris EN |title=The biology of pure red cell aplasia |journal=Semin. Hematol. |volume=28 |issue=4 |pages=275–84 |date=October 1991 |pmid=1759168 |doi= |url=}}</ref>  
* In some cases of [[autoimmune]] PRCA, [[T lymphocytes]] suppress [[erythropoiesis]].<ref name="pmid8639922">{{cite journal |vauthors=Lacy MQ, Kurtin PJ, Tefferi A |title=Pure red cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of cytogenetic abnormalities |journal=Blood |volume=87 |issue=7 |pages=3000–6 |date=April 1996 |pmid=8639922 |doi= |url=}}</ref>
* In some cases of [[autoimmune]] PRCA, [[T lymphocytes]] suppress [[erythropoiesis]].<ref name="pmid8639922">{{cite journal |vauthors=Lacy MQ, Kurtin PJ, Tefferi A |title=Pure red cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of cytogenetic abnormalities |journal=Blood |volume=87 |issue=7 |pages=3000–6 |date=April 1996 |pmid=8639922 |doi= |url=}}</ref>
Line 53: Line 53:
** [[Non-Hodgkin lymphoma]]
** [[Non-Hodgkin lymphoma]]


* [[Myeloid]] malignancies such as [[Chronic myeloid leukemia]]
* [[Myeloid]] malignancies such as [[chronic myeloid leukemia]]
* [[Myelodysplastic syndrome]]<ref name="pmid1759168">{{cite journal |vauthors=Dessypris EN |title=The biology of pure red cell aplasia |journal=Semin. Hematol. |volume=28 |issue=4 |pages=275–84 |date=October 1991 |pmid=1759168 |doi= |url=}}</ref>
* [[Myelodysplastic syndrome]]<ref name="pmid1759168">{{cite journal |vauthors=Dessypris EN |title=The biology of pure red cell aplasia |journal=Semin. Hematol. |volume=28 |issue=4 |pages=275–84 |date=October 1991 |pmid=1759168 |doi= |url=}}</ref>
* [[Idiopathic]]<ref name="pmid18576941">{{cite journal |vauthors=Miller AC, Rashid RM |title=Three episodes of acquired pure red cell aplasia restricted to pregnancy |journal=J Perinat Med |volume=36 |issue=3 |pages=270–1 |date=2008 |pmid=18576941 |doi=10.1515/JPM.2008.041 |url=}}</ref>
* [[Idiopathic]]<ref name="pmid18576941">{{cite journal |vauthors=Miller AC, Rashid RM |title=Three episodes of acquired pure red cell aplasia restricted to pregnancy |journal=J Perinat Med |volume=36 |issue=3 |pages=270–1 |date=2008 |pmid=18576941 |doi=10.1515/JPM.2008.041 |url=}}</ref>
Line 68: Line 68:
**  
**  
* [[ABO blood group system|ABO]]- incompatible [[hematopoietic cell]] [[transplantation]]
* [[ABO blood group system|ABO]]- incompatible [[hematopoietic cell]] [[transplantation]]
* Anti- [[erythropoietin]] antibodies due to treatment with recombinant human [[erythropoietin]]<ref name="pmid24120841">{{cite journal |vauthors=Rossert J, Yue S, Smirnakis K, Mytych DT, Johnson L, Kouchakji E, Casadevall N |title=Risk of pure red cell aplasia in patients with hepatitis C receiving antiviral therapy and an erythropoiesis-stimulating agent |journal=Clin. Gastroenterol. Hepatol. |volume=12 |issue=2 |pages=341–5 |date=February 2014 |pmid=24120841 |doi=10.1016/j.cgh.2013.09.065 |url=}}</ref>
* Anti-[[erythropoietin]] antibodies due to treatment with recombinant human [[erythropoietin]]<ref name="pmid24120841">{{cite journal |vauthors=Rossert J, Yue S, Smirnakis K, Mytych DT, Johnson L, Kouchakji E, Casadevall N |title=Risk of pure red cell aplasia in patients with hepatitis C receiving antiviral therapy and an erythropoiesis-stimulating agent |journal=Clin. Gastroenterol. Hepatol. |volume=12 |issue=2 |pages=341–5 |date=February 2014 |pmid=24120841 |doi=10.1016/j.cgh.2013.09.065 |url=}}</ref>
* [[Plasma cell disorders]]<ref name="pmid26999424">{{cite journal |vauthors=Korde N, Zhang Y, Loeliger K, Poon A, Simakova O, Zingone A, Costello R, Childs R, Noel P, Silver S, Kwok M, Mo C, Young N, Landgren O, Sloand E, Maric I |title=Monoclonal gammopathy-associated pure red cell aplasia |journal=Br. J. Haematol. |volume=173 |issue=6 |pages=876–83 |date=June 2016 |pmid=26999424 |pmc=5549779 |doi=10.1111/bjh.14012 |url=}}</ref>
* [[Plasma cell disorders]]<ref name="pmid26999424">{{cite journal |vauthors=Korde N, Zhang Y, Loeliger K, Poon A, Simakova O, Zingone A, Costello R, Childs R, Noel P, Silver S, Kwok M, Mo C, Young N, Landgren O, Sloand E, Maric I |title=Monoclonal gammopathy-associated pure red cell aplasia |journal=Br. J. Haematol. |volume=173 |issue=6 |pages=876–83 |date=June 2016 |pmid=26999424 |pmc=5549779 |doi=10.1111/bjh.14012 |url=}}</ref>
* [[Pregnancy]]
* [[Pregnancy]]
Line 77: Line 77:


==Differentiating Pure Red Cell Aplasia from Other Diseases==
==Differentiating Pure Red Cell Aplasia from Other Diseases==
Pure red cell aplasia must be differentiated from [[Transient erythroblastopenia of childhood]], [[Diamond-Blackfan anemia]] ([[Diamond-Blackfan anemia|DBA]]) and [[Aplastic anemia]]:
Pure red cell aplasia must be differentiated from [[transient erythroblastopenia of childhood]], [[Diamond-Blackfan anemia]] ([[Diamond-Blackfan anemia|DBA]]) and [[Aplastic anemia]]:
* [[Transient erythroblastopenia of childhood]]: Itr is self-limited condition during first years of life.
* [[Transient erythroblastopenia of childhood]]: It is self-limited condition during first years of life.


* [[Diamond-Blackfan anemia]] ([[DBA]]): [[congenital]] form of red cell [[aplasia]]. It is associated with some [[malignancies]] and it does not respond to [[prednisone]].  
* [[Diamond-Blackfan anemia]] ([[DBA]]): [[congenital]] form of red cell [[aplasia]]. It is associated with some [[malignancies]] and it does not respond to [[prednisone]].  
Line 84: Line 84:


==Epidemiology and Demographics==
==Epidemiology and Demographics==
* The [[incidence]] of Diamond-Blackfan anemia (DBA) is approximately 6.6 per 100,000 individuals in Erope. Pure red cell aplasia due to [[Diamond-Blackfan anemia]] ([[DBA]]) affects men and women equally and there is no racial predilection to this disease.  
* The [[incidence]] of Diamond-Blackfan anemia (DBA) is approximately 6.6 per 100,000 individuals in Europe. Pure red cell aplasia due to [[Diamond-Blackfan anemia]] ([[DBA]]) affects men and women equally and there is no racial predilection to this disease.  
* The acquired form of pure red cell aplasia can presents as an [[acute]] self-limited disease predominantly in children or [[chronic]] illness that is more seen in adults.<ref name="pmid185106824">{{cite journal |vauthors=Sawada K, Fujishima N, Hirokawa M |title=Acquired pure red cell aplasia: updated review of treatment |journal=Br. J. Haematol. |volume=142 |issue=4 |pages=505–14 |date=August 2008 |pmid=18510682 |pmc=2592349 |doi=10.1111/j.1365-2141.2008.07216.x |url=}}</ref>  
* The acquired form of pure red cell aplasia can presents as an [[acute]] self-limited disease predominantly in children or [[chronic]] illness that is more seen in adults.<ref name="pmid185106824">{{cite journal |vauthors=Sawada K, Fujishima N, Hirokawa M |title=Acquired pure red cell aplasia: updated review of treatment |journal=Br. J. Haematol. |volume=142 |issue=4 |pages=505–14 |date=August 2008 |pmid=18510682 |pmc=2592349 |doi=10.1111/j.1365-2141.2008.07216.x |url=}}</ref>  
* The [[incidence]] of [[thymoma]] in patients with pure red cell aplasia is about 5%.<ref name="pmid65818393">{{cite journal |vauthors=Clark DA, Dessypris EN, Krantz SB |title=Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients |journal=Blood |volume=63 |issue=2 |pages=277–86 |date=February 1984 |pmid=6581839 |doi= |url=}}</ref>
* The [[incidence]] of [[thymoma]] in patients with pure red cell aplasia is about 5%.<ref name="pmid65818393">{{cite journal |vauthors=Clark DA, Dessypris EN, Krantz SB |title=Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients |journal=Blood |volume=63 |issue=2 |pages=277–86 |date=February 1984 |pmid=6581839 |doi= |url=}}</ref>

Latest revision as of 03:50, 16 February 2019

Template:DiseaseDisorder infobox

WikiDoc Resources for Pure red cell aplasia

Articles

Most recent articles on Pure red cell aplasia

Most cited articles on Pure red cell aplasia

Review articles on Pure red cell aplasia

Articles on Pure red cell aplasia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Pure red cell aplasia

Images of Pure red cell aplasia

Photos of Pure red cell aplasia

Podcasts & MP3s on Pure red cell aplasia

Videos on Pure red cell aplasia

Evidence Based Medicine

Cochrane Collaboration on Pure red cell aplasia

Bandolier on Pure red cell aplasia

TRIP on Pure red cell aplasia

Clinical Trials

Ongoing Trials on Pure red cell aplasia at Clinical Trials.gov

Trial results on Pure red cell aplasia

Clinical Trials on Pure red cell aplasia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Pure red cell aplasia

NICE Guidance on Pure red cell aplasia

NHS PRODIGY Guidance

FDA on Pure red cell aplasia

CDC on Pure red cell aplasia

Books

Books on Pure red cell aplasia

News

Pure red cell aplasia in the news

Be alerted to news on Pure red cell aplasia

News trends on Pure red cell aplasia

Commentary

Blogs on Pure red cell aplasia

Definitions

Definitions of Pure red cell aplasia

Patient Resources / Community

Patient resources on Pure red cell aplasia

Discussion groups on Pure red cell aplasia

Patient Handouts on Pure red cell aplasia

Directions to Hospitals Treating Pure red cell aplasia

Risk calculators and risk factors for Pure red cell aplasia

Healthcare Provider Resources

Symptoms of Pure red cell aplasia

Causes & Risk Factors for Pure red cell aplasia

Diagnostic studies for Pure red cell aplasia

Treatment of Pure red cell aplasia

Continuing Medical Education (CME)

CME Programs on Pure red cell aplasia

International

Pure red cell aplasia en Espanol

Pure red cell aplasia en Francais

Business

Pure red cell aplasia in the Marketplace

Patents on Pure red cell aplasia

Experimental / Informatics

List of terms related to Pure red cell aplasia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Shyam Patel [2] Associate Editor(s)-in-Chief: Mahda Alihashemi M.D. [3]

Synonyms and keywords: Pure red cell aplasia; Erythroblastopenia.


WikiDoc Resources for Pure red cell aplasia

Articles

Most recent articles on Pure red cell aplasia

Most cited articles on Pure red cell aplasia

Review articles on Pure red cell aplasia

Articles on Pure red cell aplasia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Pure red cell aplasia

Images of Pure red cell aplasia

Photos of Pure red cell aplasia

Podcasts & MP3s on Pure red cell aplasia

Videos on Pure red cell aplasia

Evidence Based Medicine

Cochrane Collaboration on Pure red cell aplasia

Bandolier on Pure red cell aplasia

TRIP on Pure red cell aplasia

Clinical Trials

Ongoing Trials on Pure red cell aplasia at Clinical Trials.gov

Trial results on Pure red cell aplasia

Clinical Trials on Pure red cell aplasia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Pure red cell aplasia

NICE Guidance on Pure red cell aplasia

NHS PRODIGY Guidance

FDA on Pure red cell aplasia

CDC on Pure red cell aplasia

Books

Books on Pure red cell aplasia

News

Pure red cell aplasia in the news

Be alerted to news on Pure red cell aplasia

News trends on Pure red cell aplasia

Commentary

Blogs on Pure red cell aplasia

Definitions

Definitions of Pure red cell aplasia

Patient Resources / Community

Patient resources on Pure red cell aplasia

Discussion groups on Pure red cell aplasia

Patient Handouts on Pure red cell aplasia

Directions to Hospitals Treating Pure red cell aplasia

Risk calculators and risk factors for Pure red cell aplasia

Healthcare Provider Resources

Symptoms of Pure red cell aplasia

Causes & Risk Factors for Pure red cell aplasia

Diagnostic studies for Pure red cell aplasia

Treatment of Pure red cell aplasia

Continuing Medical Education (CME)

CME Programs on Pure red cell aplasia

International

Pure red cell aplasia en Espanol

Pure red cell aplasia en Francais

Business

Pure red cell aplasia in the Marketplace

Patents on Pure red cell aplasia

Experimental / Informatics

List of terms related to Pure red cell aplasia

Overview

Pure red cell aplasia was first discovered by Paul Kaznelson in 1922. Pure red cell aplasia may be classified into primary (idiopathic) PRCA and acquired red cell aplasia. It is thought that acquired pure red cell aplasia is the result of profound anemia due to severe reduction in number of RBC in peripheral blood and absence of erythroid precursors, proerythroblast in the bone marrow. Causes include autoimmune disease, thymoma, viral infections, lymphoproliferative disorders, idiopathic, drugs, ABO- incompatible hematopoietic cell transplantation, Anti- erythropoietin antibodies. Pure red cell aplasia must be differentiated from transient erythroblastopenia of childhood, Diamond-Blackfan anemia (DBA) and aplastic anemia. The incidence of Diamond-Blackfan anemia (DBA) is approximately 6.6 per 100,000 individuals in Europe. Pure red cell aplasia due to Diamond-Blackfan anemia (DBA) affects men and women equally. Common risk factor in the development of pure red cell aplasia include strong family history. If left untreated, 14% of patients with pure red cell aplasia may have spontaneously remitting disease. Pure red cell aplasia due to parvovirus infection usually resolve within 2-3 weeks. Common complications of pure red cell aplasia include infection due to side effects of some treatments. Prognosis is generally good. Diagnostic study of choice include complete blood count, peripheral smear, reticulocyte count, hepatic function test, renal function test, bone marrow aspiration and biopsy. Common symptoms of pure red cell aplasia include fatigue and lethargy. Laboratory findings consistent with the diagnosis of pure red cell aplasia include normocytic, normochromic anemia, very low or zero reticulocyte percentage and an absolute reticulocyte count <10,000/microL, normal white blood cell and platelets. An x-ray may be helpful in the diagnosis of thymoma and other neoplasms. Medical therapy include red blood cell transfusion in symptomatic anemia, cessation of offending drugs, Intravenous immune globulin (IVIG) in resistant pure red cell aplasia, Immunosuppressive therapy in idiopathic pure red cell aplasia. Surgery is usually reserved for patients with thymoma.

Historical Perspective

  • Pure red cell aplasia was first discovered by Paul Kaznelson in 1922.[1]
  • A congenital form of PRCA was described by Diamond and Blackfan in 1938.

Classification

There is no established system for the classification of pure red cell aplasia (PRCA). However it may be classified into primary (idiopathic) PRCA and acquired red cell aplasia. Diamond-Blackfan anemia (DBA) is a congenital form of red cell aplasia. Based on the duration of symptoms, pure red cell aplasia may be classified as either acute or chronic.

Pathophysiology

Causes

Differentiating Pure Red Cell Aplasia from Other Diseases

Pure red cell aplasia must be differentiated from transient erythroblastopenia of childhood, Diamond-Blackfan anemia (DBA) and Aplastic anemia:

Epidemiology and Demographics

  • The incidence of Diamond-Blackfan anemia (DBA) is approximately 6.6 per 100,000 individuals in Europe. Pure red cell aplasia due to Diamond-Blackfan anemia (DBA) affects men and women equally and there is no racial predilection to this disease.
  • The acquired form of pure red cell aplasia can presents as an acute self-limited disease predominantly in children or chronic illness that is more seen in adults.[16]
  • The incidence of thymoma in patients with pure red cell aplasia is about 5%.[17]

Risk Factors

Common risk factor in the development of pure red cell aplasia include strong family history.

Screening

There is insufficient evidence to recommend routine screening for pure red cell aplasia.

Natural History, Complications, and Prognosis

  • If left untreated, 14% of patients with pure red cell aplasia may have spontaneously remitting disease.[18]
  • Pure red cell aplasia due to parvovirus infection usually resolve within 2-3 weeks. [19]
  • Common complications of pure red cell aplasia include infection due to side effects of some treatments such as glucocorticoids and cyclophosphamide.
  • Prognosis is generally good. In one study in 1984, survival in idiopathic pure red cell aplasia was more than 10 years, but only four years in pure red cell aplasia secondary to leukemia and lymphoma.[20]

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Common symptoms of pure red cell aplasia include fatigue and lethargy.

Physical Examination

Common physical examination findings of pure red cell aplasia include fast heart beat and pale apperance.

Laboratory Findings

Laboratory findings consistent with the diagnosis of pure red cell aplasia include:[22]

Electrocardiogram

There are no ECG findings associated with pure red cell aplasia.

X-ray

An x-ray may be helpful in the diagnosis of thymoma and other neoplasms.

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with pure red cell aplasia.

CT scan

Chest CT scan may be helpful in the diagnosis of thymoma and other neoplasms.

MRI

Chest MRI may be helpful in the diagnosis of thymoma and other neoplasms.

Imaging Findings

There are no other imaging findings associated with pure red cell aplasia.

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Thymectomy: Surgery is usually reserved for patients with thymoma. [33]

Primary Prevention

There are no established measures for the primary prevention of pure red cell aplasia.

Secondary Prevention

There are no established measures for the secondary prevention of pure red cell aplasia.

References

  1. Sawada K, Fujishima N, Hirokawa M (August 2008). "Acquired pure red cell aplasia: updated review of treatment". Br. J. Haematol. 142 (4): 505–14. doi:10.1111/j.1365-2141.2008.07216.x. PMC 2592349. PMID 18510682.
  2. Dessypris EN (October 1991). "The biology of pure red cell aplasia". Semin. Hematol. 28 (4): 275–84. PMID 1759168.
  3. Dessypris EN (October 1991). "The biology of pure red cell aplasia". Semin. Hematol. 28 (4): 275–84. PMID 1759168.
  4. Lacy MQ, Kurtin PJ, Tefferi A (April 1996). "Pure red cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of cytogenetic abnormalities". Blood. 87 (7): 3000–6. PMID 8639922.
  5. Hirokawa M, Sawada K, Fujishima N, Nakao S, Urabe A, Dan K, Fujisawa S, Yonemura Y, Kawano F, Omine M, Ozawa K (January 2008). "Long-term response and outcome following immunosuppressive therapy in thymoma-associated pure red cell aplasia: a nationwide cohort study in Japan by the PRCA collaborative study group". Haematologica. 93 (1): 27–33. doi:10.3324/haematol.11655. PMID 18166782.
  6. Geetha D, Zachary JB, Baldado HM, Kronz JD, Kraus ES (December 2000). "Pure red cell aplasia caused by Parvovirus B19 infection in solid organ transplant recipients: a case report and review of literature". Clin Transplant. 14 (6): 586–91. PMID 11127313.
  7. al-Awami Y, Sears DA, Carrum G, Udden MM, Alter BP, Conlon CL (August 1997). "Pure red cell aplasia associated with hepatitis C infection". Am. J. Med. Sci. 314 (2): 113–7. PMID 9258213.
  8. Kwong YL, Wong KF (September 1998). "Association of pure red cell aplasia with T large granular lymphocyte leukaemia". J. Clin. Pathol. 51 (9): 672–5. PMC 500904. PMID 9930071.
  9. Dessypris EN (October 1991). "The biology of pure red cell aplasia". Semin. Hematol. 28 (4): 275–84. PMID 1759168.
  10. Miller AC, Rashid RM (2008). "Three episodes of acquired pure red cell aplasia restricted to pregnancy". J Perinat Med. 36 (3): 270–1. doi:10.1515/JPM.2008.041. PMID 18576941.
  11. Macdougall IC (November 2007). "Epoetin-induced pure red cell aplasia: diagnosis and treatment". Curr. Opin. Nephrol. Hypertens. 16 (6): 585–8. doi:10.1097/MNH.0b013e3282f0c4bf. PMID 18089975.
  12. Bartakke S, Abdelhaleem M, Carcao M (April 2008). "Valproate-induced pure red cell aplasia and megakaryocyte dysplasia". Br. J. Haematol. 141 (2): 133. doi:10.1111/j.1365-2141.2008.06979.x. PMID 18353161.
  13. Thompson DF, Gales MA (1996). "Drug-induced pure red cell aplasia". Pharmacotherapy. 16 (6): 1002–8. PMID 8947971.
  14. Rossert J, Yue S, Smirnakis K, Mytych DT, Johnson L, Kouchakji E, Casadevall N (February 2014). "Risk of pure red cell aplasia in patients with hepatitis C receiving antiviral therapy and an erythropoiesis-stimulating agent". Clin. Gastroenterol. Hepatol. 12 (2): 341–5. doi:10.1016/j.cgh.2013.09.065. PMID 24120841.
  15. Korde N, Zhang Y, Loeliger K, Poon A, Simakova O, Zingone A, Costello R, Childs R, Noel P, Silver S, Kwok M, Mo C, Young N, Landgren O, Sloand E, Maric I (June 2016). "Monoclonal gammopathy-associated pure red cell aplasia". Br. J. Haematol. 173 (6): 876–83. doi:10.1111/bjh.14012. PMC 5549779. PMID 26999424.
  16. Sawada K, Fujishima N, Hirokawa M (August 2008). "Acquired pure red cell aplasia: updated review of treatment". Br. J. Haematol. 142 (4): 505–14. doi:10.1111/j.1365-2141.2008.07216.x. PMC 2592349. PMID 18510682.
  17. Clark DA, Dessypris EN, Krantz SB (February 1984). "Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients". Blood. 63 (2): 277–86. PMID 6581839.
  18. Clark DA, Dessypris EN, Krantz SB (February 1984). "Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients". Blood. 63 (2): 277–86. PMID 6581839.
  19. Kurtzman G, Frickhofen N, Kimball J, Jenkins DW, Nienhuis AW, Young NS (August 1989). "Pure red-cell aplasia of 10 years' duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy". N. Engl. J. Med. 321 (8): 519–23. doi:10.1056/NEJM198908243210807. PMID 2548098.
  20. Clark DA, Dessypris EN, Krantz SB (February 1984). "Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients". Blood. 63 (2): 277–86. PMID 6581839.
  21. Sawada K, Fujishima N, Hirokawa M (August 2008). "Acquired pure red cell aplasia: updated review of treatment". Br. J. Haematol. 142 (4): 505–14. doi:10.1111/j.1365-2141.2008.07216.x. PMC 2592349. PMID 18510682.
  22. Sawada K, Fujishima N, Hirokawa M (August 2008). "Acquired pure red cell aplasia: updated review of treatment". Br. J. Haematol. 142 (4): 505–14. doi:10.1111/j.1365-2141.2008.07216.x. PMC 2592349. PMID 18510682.
  23. Crabol Y, Terrier B, Rozenberg F, Pestre V, Legendre C, Hermine O, Montagnier-Petrissans C, Guillevin L, Mouthon L (April 2013). "Intravenous immunoglobulin therapy for pure red cell aplasia related to human parvovirus b19 infection: a retrospective study of 10 patients and review of the literature". Clin. Infect. Dis. 56 (7): 968–77. doi:10.1093/cid/cis1046. PMID 23243178.
  24. Ballester OF, Saba HI, Moscinski LC, Nelson R, Foulis P (July 1992). "Pure red cell aplasia: treatment with intravenous immunoglobulin concentrate". Semin. Hematol. 29 (3 Suppl 2): 106–8. PMID 1509289.
  25. Sawada K, Fujishima N, Hirokawa M (August 2008). "Acquired pure red cell aplasia: updated review of treatment". Br. J. Haematol. 142 (4): 505–14. doi:10.1111/j.1365-2141.2008.07216.x. PMC 2592349. PMID 18510682.
  26. Lacy MQ, Kurtin PJ, Tefferi A (April 1996). "Pure red cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of cytogenetic abnormalities". Blood. 87 (7): 3000–6. PMID 8639922.
  27. Raghavachar A (1990). "Pure red cell aplasia: review of treatment and proposal for a treatment strategy". Blut. 61 (2–3): 47–51. PMID 1698487.
  28. Lacy MQ, Kurtin PJ, Tefferi A (April 1996). "Pure red cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of cytogenetic abnormalities". Blood. 87 (7): 3000–6. PMID 8639922.
  29. Abkowitz JL, Powell JS, Nakamura JM, Kadin ME, Adamson JW (December 1986). "Pure red cell aplasia: response to therapy with anti-thymocyte globulin". Am. J. Hematol. 23 (4): 363–71. PMID 3098093.
  30. Ghazal H (February 2002). "Successful treatment of pure red cell aplasia with rituximab in patients with chronic lymphocytic leukemia". Blood. 99 (3): 1092–4. PMID 11807020.
  31. Ru X, Liebman HA (October 2003). "Successful treatment of refractory pure red cell aplasia associated with lymphoproliferative disorders with the anti-CD52 monoclonal antibody alemtuzumab (Campath-1H)". Br. J. Haematol. 123 (2): 278–81. PMID 14531909.
  32. Sloand EM, Scheinberg P, Maciejewski J, Young NS (February 2006). "Brief communication: Successful treatment of pure red-cell aplasia with an anti-interleukin-2 receptor antibody (daclizumab)". Ann. Intern. Med. 144 (3): 181–5. PMID 16461962.
  33. Clark DA, Dessypris EN, Krantz SB (February 1984). "Studies on pure red cell aplasia. XI. Results of immunosuppressive treatment of 37 patients". Blood. 63 (2): 277–86. PMID 6581839.


Template:WikiDoc Sources


See also

External links

Template:Hematology

Template:WikiDoc Sources