Hearing impairment other diagnostic studies

Revision as of 18:28, 31 August 2012 by Aditya Govindavarjhulla (talk | contribs) (Created page with "The quietest sound you can hear at different frequencies is plotted on an audiogram to reflect your ability to hear at different frequencies. The range of normal human hearin...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The quietest sound you can hear at different frequencies is plotted on an audiogram to reflect your ability to hear at different frequencies. The range of normal human hearing (from the softest audible sound to the loudest comfortable sound) is so great that the audiogram must be plotted using a logarithmic scale. This large normal range, and the different amounts of hearing loss at different frequencies, make it virtually impossible to accurately describe the amount of hearing loss in simple terms such as percentages or the rankings above.

Measuring hearing loss in terms of a percentage is debatable in terms of effectiveness, and has been compared to measuring weight in inches. Though in specific legal situations, where decibels of loss are converted via a recognized legal formula, one can infer a standardized "percentage of hearing loss" which is suitable for legal purposes only.

Another method for determining hearing loss, is the Hearing in Noise Test (HINT). HINT technology was developed by the House Ear Institute, and is intended to measure an ability to understand speech in quiet and noisy environments. Unlike pure-tone tests, where only one ear is tested at a time, HINT evaluates hearing using both ears simultaneously (binaural), as binaural hearing is essential for communication in noisy environments, and for sound localization.