Frontotemporal lobar degeneration

Jump to navigation Jump to search
Frontotemporal lobar degeneration
A human brain showing frontotemporal lobar degeneration causing frontotemporal dementia.
OMIM 600274
DiseasesDB 10034
MeSH D003704

WikiDoc Resources for Frontotemporal lobar degeneration

Articles

Most recent articles on Frontotemporal lobar degeneration

Most cited articles on Frontotemporal lobar degeneration

Review articles on Frontotemporal lobar degeneration

Articles on Frontotemporal lobar degeneration in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Frontotemporal lobar degeneration

Images of Frontotemporal lobar degeneration

Photos of Frontotemporal lobar degeneration

Podcasts & MP3s on Frontotemporal lobar degeneration

Videos on Frontotemporal lobar degeneration

Evidence Based Medicine

Cochrane Collaboration on Frontotemporal lobar degeneration

Bandolier on Frontotemporal lobar degeneration

TRIP on Frontotemporal lobar degeneration

Clinical Trials

Ongoing Trials on Frontotemporal lobar degeneration at Clinical Trials.gov

Trial results on Frontotemporal lobar degeneration

Clinical Trials on Frontotemporal lobar degeneration at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Frontotemporal lobar degeneration

NICE Guidance on Frontotemporal lobar degeneration

NHS PRODIGY Guidance

FDA on Frontotemporal lobar degeneration

CDC on Frontotemporal lobar degeneration

Books

Books on Frontotemporal lobar degeneration

News

Frontotemporal lobar degeneration in the news

Be alerted to news on Frontotemporal lobar degeneration

News trends on Frontotemporal lobar degeneration

Commentary

Blogs on Frontotemporal lobar degeneration

Definitions

Definitions of Frontotemporal lobar degeneration

Patient Resources / Community

Patient resources on Frontotemporal lobar degeneration

Discussion groups on Frontotemporal lobar degeneration

Patient Handouts on Frontotemporal lobar degeneration

Directions to Hospitals Treating Frontotemporal lobar degeneration

Risk calculators and risk factors for Frontotemporal lobar degeneration

Healthcare Provider Resources

Symptoms of Frontotemporal lobar degeneration

Causes & Risk Factors for Frontotemporal lobar degeneration

Diagnostic studies for Frontotemporal lobar degeneration

Treatment of Frontotemporal lobar degeneration

Continuing Medical Education (CME)

CME Programs on Frontotemporal lobar degeneration

International

Frontotemporal lobar degeneration en Espanol

Frontotemporal lobar degeneration en Francais

Business

Frontotemporal lobar degeneration in the Marketplace

Patents on Frontotemporal lobar degeneration

Experimental / Informatics

List of terms related to Frontotemporal lobar degeneration

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Kiran Singh, M.D. [2]

Synonyms and keywords:

Frontotemporal lobar degeneration, FTD, FTLD, Frontotemporal dementia, Pick’s disease

Overview

Frontotemporal lobar degeneration (FTLD) is an umbrella term that refers to a group of progressive brain diseases, which are heterogeneous concerning neuropathology and etiology but share atrophy of the frontal and/or temporal cortex as a morphological feature. The clinical manifestations of the disorder depend on the primary site of atrophy and dominated by behavior alterations and language impairment. The mean survival after diagnosis is from 3 to 10 years.

Historical Perspective

Historically, patients having symptoms of frontotemporal lobe degeneration were diagnosed as Pick disease after Arnold Pick described a 71-year-old man with dementia with behavioral symptoms and sensory aphasia for the first time in 1892. This patient demonstrated severe atrophy of frontotemporal lobes on autopsy.Histopathologic examination of tissue samples showed “ballooned” achromatic neurons, which was referred to as Pick cells and argyrophilic inclusions within frontal neurons that were referred to as Pick bodies( composed of insoluble filaments of the microtubule-associated protein tau). Later on, autosomal dominant forms of Pick disease were reported, and the mutations in the gene encoding the microtubule-associated protein tau (MAPT) located at 17q21 were identified. At present, 42 mutations in MAPT have been described in 119 families with FTLD or related disorders. However, in an estimated 60% to 70% of all patients with FTLD undergoing autopsy, no tau pathologic characteristics can be demonstrated. This autopy finding suggets that insoluble tau is not necessary for the clinical phenotype to develop..[1][2]

Classification

Frontotemporal lobe degeneration patients can be classified into three different clinical syndromes depending on the early and predominant symptoms. The overlap between these clinical syndromes can occur as the disease progresses to involve both temporal and frontal lobes more diffusely.[3]

  1. Behavioural-Variant Frontotemporal Dementia (bvFTD)
  1. Semantic Dementia (SD)
  2. Progressive Nonfluent Aphasia (PNFA)

Behavioural-Variant Frontotemporal Dementia (bvFTD)

Behavioral variant frontotemporal dementia is characterized by a progressive decline in executive and interpersonal skills, with altered emotions and the emergence of a variety of abnormal behaviors including disinhibition, obsessions, apathy, and stereotypes. The bvFTD can develop indolently, and early detection may depend on small changes of social circumstances, reduced libido, idiosyncratic lapses of taste or social awareness, and altered dietary or musical preferences.[4]

Semantic Dementia (SD)

Semantic dementia is also known as semantic variant primary progressive aphasia (svPPA) is a highly characteristic syndrome led by the progressive breakdown of semantic memory—a type of long term memory system that stores knowledge about concepts and objects based on the individual’s accumulated experience of the world. Typically, semantic dementia initially presents with progressive loss of semantic knowledge about words, concepts and objects.[5]

Progressive Nonfluent Aphasia (PNFA)

Progressive Nonfluent Aphasia (PNFA) is characterized by a progressive breakdown in language output with slow, impaired production, effortful speech, and comprehension of grammar, and motor speech deficits. Apraxia of speech is highly characteristic of PNFA, and dysarthria is more variably present. Some patients have expressive agrammatism with terse telegraphic phrases as the dominant feature of the disease, whereas, in others, the syndrome is dominated by speech sound (phonemic) or articulatory (phonetic, speech apraxic) errors.[6]

Frontotemporal Lobar Degeneration (FTLD) Overlap Syndromes

The frontotemporal degeneration spectrum overlaps with the syndromes of corticobasal degeneration(CBD), progressive supranuclear palsy(PSP), and FTD with motor neuron disease. CBD patients present with dystonia, limb apraxia, postural instability, Axial, and limb rigidity, myoclonus, supranuclear gaze palsies, the ‘alien limb phenomenon,’ and cortical sensory loss. The progressive supranuclear palsy syndrome(PSP) is characterized by impairment of vertical gaze, frontal behavioral changes with marked cognitive slowing, and early postural instability with falls.[7][8]

Pathophysiology

The gross finding of frontotemporal lobar degeneration is likely produced by several etiologically distinct processes, with unique genetic and histopathological findings. Accordingly, there are a number of possible histopathological findings at post-mortem:

  • tau inclusions (either with Pick bodies or without)
  • ubiquitin positive (tau-negative) inclusions - in the majority of cases that have this type of pathology the ubiquitinated inclusions contain a protein called TDP-43. There are three subtypes of this type of pathology. Mackenzie et al (and subsequently Davidson et al) describe the following: type 1 with intranuclear inclusions; type 2 with neurites predominantly and type 3 with cytoplasmic inclusions predominantly. It should be noted that not all ubiquitin-positive, tau negative cases stain for TDP-43 e.g. the CHMP2B cases but also other cases.
  • Dementia lacking distinctive histology (DLDH) - A rare and controversial entity - new analyses have allowed many cases to be reclassified into one of the positively-defined subgroups.

Genetics

Many cases (possibly up to 50%) of FTLD are genetic rather than sporadic. Mutations in the Tau gene (on chromosome 17q21 - known as MAPT or Microtubule Associated Protein Tau) can cause FTLD and there are over 40 known mutations at present. A series of new mutations associated with FTLD has been recently described in the progranulin gene which is remarkably also on chromosome 17q21. Patients with progranulin mutations have type 1 TDP-43 positive, tau negative pathology at post-mortem. Progranulin is associated with tumorgenesis when overproduced, whereas the mutations seen in the progranulin gene associated with FTLD suggests a deficit in progranulin may be the problem. There are currently 2 other known genes that can cause FTLD: CHMP2B (on chromosome 3) which is associated with a behavioural syndrome (mainly in a large Jutland cohort); and VCP (valosin-containing protein, on chromosome 9) which is associated with the IBMPFD syndrome (inclusion body myopathy, Paget's disease and frontotemporal dementia). These 2 genes only account for a tiny proportion of cases. A locus on chromosome 9 is associated with FTD-MND (or FTD-ALS) i.e. frontotemporal dementia associated with motor neurone disease (or amyotrophic lateral sclerosis) - the hunt for this gene is currently the focus of a number of research labs around the world.

Causes

FTD patients have an abnormal buildup of altered brain proteins in the frontal and temporal lobes of the brain, the tau protein, and the transactive response DNA binding protein-43 (TDP-43) are commonly involved. The specific functions of these proteins are not entirely known, but these proteins are critical for the proper function of neurons. In patients with FTD, these proteins are misfolded, clumped, or aggregate together, leading to atrophy of frontal and temporal lobes.

  • Almost 60% of patients have sporadic or non familial form of disease
  • Almost 40% of patients have family history of neurodegenerative disorder
  • Almost 10-25% of patients following major gene mutations have been identified.
    • MAPT
    • GRN
    • C9ORF72
  • Following gene mutations are rare causes of FTD.
    • VCP
    • TARDBP,
    • FUS
    • CHMP2B
    • TBK1

Differential Diagnosis Of Major or Mild Frontotemporal Neurocognitive Disorder

  • Other neurocognitive disorders
  • Other neurological conditions
  • Other mental disorders and medical conditions
Cause of dementia Clinical features Associated features Nature of progression Histopathological findings
Cognitive impairment
Recall Recollection Cue requirement for recall Infirngement of thoughts Semantic memory Procedural memory Working memory Awareness Attention Executive functioning issues Visuo-spatial skills
Alzheimer's disease +++

(Slow cognitive and functional decline with early loss of awareness)

+++ Not helpful +++ ++ - ++ +++ ++ ++ ++ Has the following clinical stages:
Lewy body dementia ++ - Helpful +++ + + +++ + +++ +++ +++
Frontotemporal lobar degeneration +/- - Helpful +++ + - +++ +++ ++ +++ -
  • Onset in young age
Vascular dementia + (Dysexecutive syndrome) - Helpful + + + ++ - ++ +++ +


Epidemiology and Demographics

The prevalence of FTD in population-based studies varied from 2.7/100,00 to 9.4 /100,000 in the 60-69-year-old group in the Zuid-Holland district, Netherlands. Two studies reported a similar incidence of FLD in adults with early-onset dementia in Cambridge, UK( 3.5/100,000 person-years in 45-64 years old group), and Rochester, USA( 3.3/100,000 person-years in 50-59 age group).[26][27]

The majority of the patients manifest the disease in the sixth decade of life, but the age of onset can vary widely from the third to the ninth decade. Although FTLD is generally considered presenile dementia, individuals over the age of 65 years account for almost 20–25% of all cases.

Risk Factors

Screening

Natural History, Complications, and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Symptoms

Physical Examination

Neuro

DSM-V Diagnostic Criteria for Major Or Mild Frontotemporal Neurocognitive Disorder[9]

  • A.The criteria are met for major or mild neurocognitive disorder.

AND

  • B.The disturbance has insidious onset and gradual progression.

AND

  • C.Either (1) or (2);
  • 1.Behavioral variant;
  • a.Three or more of the following behavioral symptoms:
  • i.Behavioral disinhibition.
  • ii.Apathy or inertia.
  • iii.Loss of sympathy or empathy.
  • iv.Perseverative, stereotyped or compulsive/ritualistic behavior.
  • v.Hyperorality and dietary changes.
  • b.Prominent decline in social cognition and/or executive abilities.
  • 2.Language variant:
  • a.Prominent decline in language ability, in the form of speech production, word finding, object naming, grammar, or word comprehension.

AND

  • D.Relative sparing of learning and memory and perceptual-motor function.

AND

  • E.The disturbance is not better explained by cerebrovascular disease, another neurodegenerative disease, the effects of a substance, or another mental, neurological, or systemic disorder.

Probable frontotemporal neurocognitive disorderis diagnosed if either of the following is present; otherwise, possible frontotemporal neurocognitive disorder should be diagnosed:

  • 1.Evidence of a causative frontotemporal neurocognitive disorder genetic mutation, from either family history or genetic testing.
  • 2.Evidence of disproportionate frontal and/or temporal lobe involvement from neuro imaging.

Possible frontotemporal neurocognitive disorderis diagnosed if there is no evidence of a genetic mutation, and neuro imaging has not been performed.

References

  1. Pick A. Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prag Med Wochenschr. 1892;17:165-7.
  2. Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702-705. doi:10.1038/31508
  3. Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs. 2010;24(5):375-398. doi:10.2165/11533100-000000000-00000
  4. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, Van Swieten JC, Seelaar H, Dopper EG, Onyike CU, Hillis AE. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011 Sep 1;134(9):2456-77.
  5. Hodges JR, Patterson K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 2007;6(11):1004-1014. doi:10.1016/S1474-4422(07)70266-1
  6. Rohrer JD, Rossor MN, Warren JD. Syndromes of nonfluent primary progressive aphasia: a clinical and neurolinguistic analysis. Neurology. 2010 Aug 17;75(7):603-10.
  7. Litvan I, Bhatia KP, Burn DJ, et al. Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord. 2003;18(5):467-486. doi:10.1002/mds.10459
  8. Kertesz A, McMonagle P. Behavior and cognition in corticobasal degeneration and progressive supranuclear palsy. Journal of the neurological sciences. 2010 Feb 15;289(1-2):138-43.
  9. 9.0 9.1 9.2 Diagnostic and statistical manual of mental disorders : DSM-5. Washington, D.C: American Psychiatric Association. 2013. ISBN 0890425558.
  10. Jellinger KA (2008). "The pathology of "vascular dementia": a critical update". J. Alzheimers Dis. 14 (1): 107–23. PMID 18525132.
  11. Murayama S (2008). "[Neuropathology of frontotemporal dementia]". Rinsho Shinkeigaku (in Japanese). 48 (11): 998. PMID 19198143.
  12. Hodges JR, Patterson K (1996). "Nonfluent progressive aphasia and semantic dementia: a comparative neuropsychological study". J Int Neuropsychol Soc. 2 (6): 511–24. PMID 9375155.
  13. Hodges JR, Patterson K, Oxbury S, Funnell E (1992). "Semantic dementia. Progressive fluent aphasia with temporal lobe atrophy". Brain. 115 ( Pt 6): 1783–806. PMID 1486461.
  14. "Dementia, Globalization and Contemporary Art".
  15. Helkala EL, Laulumaa V, Soininen H, Riekkinen PJ (1988). "Recall and recognition memory in patients with Alzheimer's and Parkinson's diseases". Ann. Neurol. 24 (2): 214–7. doi:10.1002/ana.410240207. PMID 3178177.
  16. Weintraub S, Wicklund AH, Salmon DP (2012). "The neuropsychological profile of Alzheimer disease". Cold Spring Harb Perspect Med. 2 (4): a006171. doi:10.1101/cshperspect.a006171. PMC 3312395. PMID 22474609.
  17. Goldman JG, Williams-Gray C, Barker RA, Duda JE, Galvin JE (2014). "The spectrum of cognitive impairment in Lewy body diseases". Mov. Disord. 29 (5): 608–21. doi:10.1002/mds.25866. PMC 4126402. PMID 24757110.
  18. Metzler-Baddeley C (2007). "A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer's disease and Parkinson's disease with dementia". Cortex. 43 (5): 583–600. PMID 17715794.
  19. Uversky VN (2008). "Alpha-synuclein misfolding and neurodegenerative diseases". Curr. Protein Pept. Sci. 9 (5): 507–40. PMID 18855701.
  20. Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE (2004). "Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function". Arch. Neurol. 61 (3): 378–84. doi:10.1001/archneur.61.3.378. PMID 15023815.
  21. Brion JP (1998). "Neurofibrillary tangles and Alzheimer's disease". Eur. Neurol. 40 (3): 130–40. PMID 9748670.
  22. Lee JS, Jung NY, Jang YK, Kim HJ, Seo SW, Lee J, Kim YJ, Lee JH, Kim BC, Park KW, Yoon SJ, Jeong JH, Kim SY, Kim SH, Kim EJ, Park KC, Knopman DS, Na DL (2017). "Prognosis of Patients with Behavioral Variant Frontotemporal Dementia Who have Focal Versus Diffuse Frontal Atrophy". J Clin Neurol. 13 (3): 234–242. doi:10.3988/jcn.2017.13.3.234. PMC 5532319. PMID 28748674.
  23. Pao WC, Dickson DW, Crook JE, Finch NA, Rademakers R, Graff-Radford NR (2011). "Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically". Alzheimer Dis Assoc Disord. 25 (4): 364–8. doi:10.1097/WAD.0b013e31820f8f50. PMC 3107353. PMID 21346515.
  24. Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A (2001). "Extrapyramidal symptoms and signs in Alzheimer's disease: prevalence and correlation with the first symptom". Am J Alzheimers Dis Other Demen. 16 (5): 268–78. doi:10.1177/153331750101600512. PMID 11603162.
  25. McGuinness B, Barrett SL, Craig D, Lawson J, Passmore AP (2010). "Executive functioning in Alzheimer's disease and vascular dementia". Int J Geriatr Psychiatry. 25 (6): 562–8. doi:10.1002/gps.2375. PMID 19810010.
  26. Rosso SM, Donker Kaat L, Baks T, et al. Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain. 2003;126(Pt 9):2016-2022. doi:10.1093/brain/awg204
  27. Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology. 2002;58(11):1615-1621. doi:10.1212/wnl.58.11.1615

See also

sv:Frontallobsdemens


Template:WikiDoc Sources