Wild-type (senile) amyloidosis pathophysiology

Revision as of 15:51, 17 December 2019 by Sabawoon Mirwais (talk | contribs)
Jump to navigation Jump to search

Wild-type (senile) amyloidosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Wild-type (senile) amyloidosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Wild-type (senile) amyloidosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Wild-type (senile) amyloidosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Wild-type (senile) amyloidosis pathophysiology

CDC on Wild-type (senile) amyloidosis pathophysiology

Wild-type (senile) amyloidosis pathophysiology in the news

Blogs on Wild-type (senile) amyloidosis pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Wild-type (senile) amyloidosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Aditya Ganti M.B.B.S. [2]

Overview

Pathophysiology

Amyloid is an abnormal insoluble extracellular protein that deposits in the different tissues and causes organic dysfunction and a wide variety of clinical syndromes. In primary amyloidosis, amyloid gradually accumulate and amyloid deposition is widespread in the viscera (mainly kidneys, heart and liver), blood vessel walls, and in the different connective tissues.

Pathogenesis

Amyloids

  • Amyloids consist of aggregated proteins that accumulate extracellularly as insoluble fibrils of misfolded proteins. Pathogenic amyloids are the consequence of previously normal proteins that lose their physiological properties and assume a beta-pleated quaternary configuration with a characteristic appearance on electron microscopy. The axis of the fiber (5-15nm in width) in these deposits is perpendicular to antiparallel chains of beta peptides.
  • These misfolded proteins are seen in various diseases such as Alzheimer's disease (beta-amyloid), diabetes mellitus type 2 (amylin), Parkinson's disease (alpha-synuclein), fatal familial insomnia (PrPsc), Huntington's disease (Huntingtin), medullary carcinoma of the thyroid (calcitonin), atherosclerosis (apolipiprotein A-I), rheumatoid arthritis (serm amyloid A), Lattice corneal dystrophy (keratoepithelin) and trasnmissible spongiform encephalopathy (PrP).
  • Amyloid fibrils are composed of smaller amyloid oligomers, which are toxic. Amyloid fibrils, once formed, catalyze the formation of these toxic oligomers.

Interaction of Amyloid fibrils with microenvironment

  • Accumulation of insoluble amyloid fibrils in tissues leads to activation proteosomes that lead to their endoproteolysis and release of amyloidogenic light chain fragments.
  • Interaction of these deposits with extracellular chaperones, matrix components including glycosaminoglycans (GAGs) and collagen, shear forces, endoproteases, and metals modulate aggregation and oligomer formation.

Tissue damage

  • The deposition of amyloid aggregates leads to architectural disruptions in tissues.
  • Amyloid fibrils may also produce organ dysfunction via interaction with ligands and disruption of cell membranes.
  • Both cytotoxicity and apoptosis have been implicated as mechanisms leading to tissue injury in primary amyloidosis.[1]
  • Specificity for a particular organ in primary amyloidosis depends upon the light chain variable region gene and gene family of the clone. Germ line gene LV6-57 is more common in AL systemic amyloidosis and is associated with renal involvement, while LV1-44 preferentially leads to fibril deposition in the heart and KV1-33 is associated with hepatic involvement.[2]
  • It has also been shown that cardiac fibroblasts internalize amyloid deposits which then migrate to mitochondrial optic atrophy 1-like protein and peroxisomal acyl-coenzyme A oxidase 1 leading to toxicity.[3]

References

  1. Riek, Roland; Eisenberg, David S. (2016). "The activities of amyloids from a structural perspective". Nature. 539 (7628): 227–235. doi:10.1038/nature20416. ISSN 0028-0836.
  2. Perfetti V, Palladini G, Casarini S, Navazza V, Rognoni P, Obici L, Invernizzi R, Perlini S, Klersy C, Merlini G (January 2012). "The repertoire of λ light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44". Blood. 119 (1): 144–50. doi:10.1182/blood-2011-05-355784. PMID 22067386.
  3. Lavatelli F, Imperlini E, Orrù S, Rognoni P, Sarnataro D, Palladini G, Malpasso G, Soriano ME, Di Fonzo A, Valentini V, Gnecchi M, Perlini S, Salvatore F, Merlini G (November 2015). "Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis". FASEB J. 29 (11): 4614–28. doi:10.1096/fj.15-272179. PMID 26220173.